VISUAL-WELD И VISUAL-MESH

РУКОВОДСТВО ПО РЕШЕНИЮ ЗАДАЧ

содержание

1. Visual-Mesh. Построение CAD модели для сварки Т-соединения	3
1.1 Запуск нового проекта	3
1.2 Моделирование нижней плиты	3
1.2 Моделирование верхней плиты	7
1.3 Моделирование наплавлавляемого материала (FILLER MATERIAL)	11
1.4 Создание промежуточного материала (GAP MATERIAL)	14
1.5 Создание вспомогательных кривых	16
1.6 Управление объектами	23
2. Visual Weld	25
ЗАДАЧА 1. ВЫПОЛНЕНИЕ СВАРКИ Т-СОЕДИНЕНИЯ	25
ЗАДАЧА 2. ВЫПОЛНЕНИЕ ЛАЗЕРНОЙ СВАРКИ ТРУБЫ	37
ЗАДАЧА З. ВЫПОЛНЕНИЕ СВАРКИ СТЫКОВОГО СОЕДИНЕНИЯ	47
ЗАДАЧА 4. ВЫПОЛНЕНИЕ МНОГОПРОХОДНОЙ СВАРКИ ТРУБЫ	59

1. VISUAL-MESH. ПОСТРОЕНИЕ САД МОДЕЛИ ДЛЯ СВАРКИ Т-СОЕДИНЕНИЯ

1.1 ЗАПУСК НОВОГО ПРОЕКТА

- Запустите Visual-Weld. Появится окно, в котором нужно выбрать в главном меню пункт Applications/Mesh.
- Выберите пункт меню File/New.
- Откроется новое рабочее окно с именем **Document1.vdb**.

1.2 МОДЕЛИРОВАНИЕ НИЖНЕЙ ПЛИТЫ

Для того чтобы строить кривые и поверхности требуемого размера, необходимо первоначально создать узлы.

Создание узлов

- Выберите пункт меню Node/By XYZ, Locate... или нажмите <F8>.
- В появившемся окне введите координаты 0, -60, 10 соответственно в поля X, Y и Z.

0	thod XYZ	Center of:
-		0 00 01.
(:	0	Nodes
Y:	-60	Node
z:	10	Compute CG
E	ntity Type]
	0	Charles In the second s
	OPoint	Start ID: 1
	() Point	Undo

- По умолчанию в разделе Method выбран метод построения узла XYZ, в разделе Entity Type выбран Node и номер ID: 1. Щелкните на кнопку Apply и найдите новый узел в рабочем окне. (Используйте приближение с помощью прокручивания средней кнопки мыши).
- Не закрывая окно постройте второй узел. Введите 2 в поле ID, введите координаты 0, 60, 10 в поля X, Y, Z и щелкните кнопку Apply.
- Для создания третьего узла (введите в поле ID: 3) введите координаты 0, -60, 0 в поля X, Y, Z и щелкните кнопку Apply.
- Для четвертого узла (ID: 4), введите координаты 0, 60, 0 в поля X, Y, Z и щелкните кнопку Apply.
- Закройте окно **Ву XYZ**, Locate.

Создание поверхности граничным методом (опция Blend)

- Выберите пункт меню Surface/Blend (Spline). Появится новое окно Blend.
- Проверьте, что выбрана опция Surf only. Введите в поле Part ID (номер детали) номер 1.
- В окне модели щелкните по узлам 1 и 2, а затем нажмите на среднюю кнопку мыши для подтверждения выбора (номер узла можно отобразить, нажав на иконку на панели Selection и щелкнув на узел).

Selec	tion			=
k	Basic Entity	+#+	FiD	10

- Щелкните на узлы 3 и 4 и подтвердите выбор нажатием средней кнопкой мыши.
 Созданный отрезок станет второй границей для новой поверхности.
- Щелкните на кнопку Apply. Будет создана поверхность с именем Part 1.

- Нажмите Close.

Создание поверхностей методом экструзии (опция Sweep)

- Выберите пункт меню Surface/Sweep (Drag). Появится окно Sweep.
- Выберите опцию Multiple curve (сложная кривая) из выпадающего списка в верхнем левом поле и введите в поле Distance (расстояние) значение 200.
- Введите 1 в поле **Part ID**.
- Щелкните на одну из линий только что созданной поверхности (прямоугольника), и подтвердите свой выбор щелчком средней кнопки мыши. Появится окно Vector definition.
- Выберите опцию Global Axis (глобальные координаты).
- Нажмите **ОК** в окне **Vector Definition** и закройте окно.
- Проверьте предварительное изображение поверхности, и если она построена верно, нажмите кнопку **Apply** в окне **Sweep**.

veep	<u>کا 8</u>				
Multiple Curves 💉	Vector 🗸				
	ce: 200				
	Surf Only				/
Part 1	D 1			/	/
	Undo		~		
Reset	Apply Close		~		
			/		
			/		
u					
~	Vector Definition				
- u	Vector Definition	Ng:			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Vector Definition Align Vector Alor 2/3 Points	ng:			
- u	Vector Definition Align Vector Alor 2/3 Points Ent. Normal XYZ Input	ng: Global Axis View Normal			
~	Vector Definition Align Vector Alor 2/3 Points Ent. Normal XYZ Input	ng: © Global Axis View Normal Along: X Axis V			
- u	Vector Definition Align Vector Alor 2/3 Points Ent. Normal XYZ Input	ng: Global Axis View Normal Along: X Axis Flip			

- Выполните описанные выше операции для построения поверхностей на основе оставшихся 3 ребер.
- Т.е. не закрывая окна щелкните на второе ребро и подтвердите нажатием средней кнопки мыши.
- Вектор (стрелка голубого цвета) должен быть направлен в направлении построения предыдущей поверхности. Если направление совпадает, нажмите **ОК** в окне **Vector Definition**.
- Также поступите с оставшимся ребрами. После построения четвертой поверхности нажмите Close в окне Sweep.
- В результате всего должны быть созданы 1 поверхность граничным методом и 4 поверхности методом экструзии как показано ниже.



# Перемещение поверхности (опция Transform)

Теперь необходимо скопировать поверхность, построенную первой, граничным методом, и закончить построение нижней плиты.

- Выберите пункт меню Surface/Transform. Появится окно Transform (перемещение).
- Поставьте в разделе Fix (закрепление) галочку напротив Y Axis и Z axis и введите в поле dX значение = 200. Т.е. будем перемещать скопированную поверхность вдоль оси X.
- Выберите поверхность, созданную граничным методом, и подтвердите щелчком средней кнопки мыши.
- Выберите в нижней части окна **Transform** опцию **Сору**. Другие параметры оставьте заданными по умолчанию.



– Нажмите кнопку 🕒 Со

- Нажмите Close.

Эта операция завершает моделирование нижней плиты.

# 1.2 МОДЕЛИРОВАНИЕ ВЕРХНЕЙ ПЛИТЫ

#### Создание узлов

- Выберите пункт меню Node/By XYZ, Locate. Появится окно By XYZ, Locate.
- Оставьте установленный метод создания узлов в разделе Method, введите координаты 0, -5, 12 соответственно в поля X, Y и Z. В поле ID номер нового узла будет 5.
- Щелкните на кнопку **Apply** и найдите новый узел в рабочем окне.
- Для узла 6 введите 0, -5, 72 в поля **X**, **Y**, **Z** и щелкните **Apply**.
- Для узла 7 введите 0, 5, 12 в поля **X**, **Y**, **Z** и щелкните **Apply**.
- Для узла 8 введите 0, 5, 72 в поля **X**, **Y**, **Z** и щелкните **Apply**.
- Новые узлы будут иметь соответственно номера 5, 6, 7 и 8.
- Закройте окно **Ву XYZ**, Locate...

#### Создание поверхности граничным методом

- Отобразите номера новых узлов.
- Для этого на панели Selection нажмите на иконку 📐 и выберите Node.

- Проверьте, что активирована кнопка 🀔. •
- Щелкните на новые узлы для отображения их номера.
- Для того чтобы убрать отображение узлов нажмите на кнопку 婦.

Sele	ection	
	Node	🤟 🍖 💑 🐼
Ľ	<u>N</u> ode	
	<u>P</u> art	
	Stitched Surface	
	<u>S</u> urface	
	Basic Entity	
	ALL	

- Выберите пункт меню Surface/Blend (Spline). Появится окно Blend.
- Измените номер в поле Part ID на 2.
- Для создания первой границы щелкните по узлам 5 и 6 и подтвердите выбор _ щелчком средней кнопки мыши.
- Щелкните по узлам 7 и 8 и подтвердите выбор щелчком средней кнопки мыши. _ Появится отрезок, представляющий вторую границу поверхности.
- Щелкните Apply. Будет создана новая поверхность под именем Part 2.
- Закройте окно.



#### Создание поверхности методом экструзии

- Выберите пункт меню **Surface/Sweep**. Появится окно **Sweep**.
- Убедитесь, что по умолчанию выбрана опция Multiple Curves и установлены значения Distance 200 и Part ID: 2.
- Щелкните на любое ребро поверхности (прямоугольника), созданной на предыдущем шаге. Подтвердите выбор щелчком правой кнопки мыши.
- В возникшем окне Vector Definition должна быть выбрана по умолчанию опция Global Axis и в строке Along установлено X-Axis.
- На экране появится вектор (стрелка голубого цвета) отображающая направление построения поверхности. Если вектор направлен неверно нажмите Flip.
- Нажмите ОК.
- Должна быть построена поверхность, как показано на рисунке. Если поверхность создана верно, нажмите Apply. В обратном случае используйте Reset (Изменить) и заново задайте параметры.



Не закрывая окно **Sweep**, выполните описанные выше операции для построения поверхностей на основе оставшихся 3 ребер. В результате должны быть созданы 1 поверхность граничным методом и 4 поверхности методом экструзии как показано ниже. Закройте окно после построения всех поверхностей.



## Перемещение поверхности

- Выберите пункт меню Surface/Transform. Появится окно Transform.
- Поставьте в разделе Fix (закрепление) галочку напротив Y Axis и Z axis и введите в поле dX значение 200.
- Выберите поверхность, созданную граничным методом, **Part 2** и подтвердите щелчком средней кнопки мыши.
- Выберите опцию Сору. Другие параметры оставьте заданными по умолчанию.
- Подтвердите операцию перемещение, нажав кнопку 🦶 Сору .
- Нажмите Close.

Transform	<b>B</b> 8 8	J
Translate O Se     Rotate O M	cale O Reorient irror	
🗟 Surface 🗢	Offset 🗸	
Fix X Axis	dX: 200	
Y Axis	dY: 0	
Z Axis	dZ: 0	
🔁 Dist. 200	Flp	
	O Move O Copy	
A New CS	No. of Copies: 1	
	Part *	
	Set Top Available ID	
Reset 🕒	Copy Close	

# **1.3 МОДЕЛИРОВАНИЕ НАПЛАВЛАВЛЯЕМОГО МАТЕРИАЛА** (FILLER MATERIAL)

#### Создание узлов

- Выберите пункт меню Node/By XYZ, Locate или нажмите F8. Появится окно By XYZ, Locate.
- Введите значения 0, 5, 16 в поля X, Y и Z. Номер ID нового узла будет 9.
- Щелкните на кнопку **Apply** и найдите новый узел в рабочем окне.
- Для узла 10 введите значения 0, 5, 10 в поля **X**, **Y**, **Z** и щелкните Apply.
- Для узла 11 введите значения 0, 11, 10 в поля X, Y, Z и щелкните Apply.
- Новые узлы будут иметь соответственно ID 9, 10 и 11.
- Закройте окно **Ву ХУΖ, Locate**...

#### Создание поверхности граничным методом

- Отобразите номера новых узлов.
  - Для этого на панели Selection нажмите на иконку 📩 и выберите Node.
  - Проверьте, что активирована кнопка 👫.
  - Щелкните на новые узлы для отображения их номера.
- Для того чтобы убрать отображение узлов нажмите на кнопку 🌆.
- Выберите пункт меню Surface/Blend (Spline). Появится окно Blend.
- Введите в поле **Part ID** номер 3.
- Для создания первой границы щелкните на узлы 9 и 10 и подтвердите выбор щелчком средней кнопки мыши.
- Щелкните на узлы 11 и 10 и подтвердите выбор щелчком средней кнопки мыши. Появится отрезок, представляющий вторую границу поверхности.



- Щелкните Apply. Будет создана новая поверхность под именем Part 3.
- Закройте окно.

#### Создание поверхности методом экструзии

- Выберите пункт меню Surface/Sweep. Появится окно Sweep.
- Убедитесь, что выбрана опция Multiple Curves и установлены значения в поле Distance: 200 и Part ID: 3.
- Щелкните на ребро, ограниченное узлами 11 и 9, поверхности (треугольника), созданной на предыдущем шаге.
- Подтвердите нажатием средней кнопки мыши
- В возникшем окне Vector Definition должна быть выбрана опция Global Axis и в строке Along установлено X-Axis. Если нужно поменять направление вектора (голубая стрелка) нажмите Flip (позволяет зеркально отобразить вектор). Нажмите OK.
- Щелкните в окне Sweep по кнопке Apply, если поверхность построена верно.

Sweep	<b>■</b> ? ¤	P	
Linear Points	Vector		
Distance	e: 200		
🔓 Part ID	Surf Only V 3		
Reset 🕒	Undo Apply Close		

- Выполните описанные выше операции для построения поверхностей на основе оставшихся 2 ребер.
- При выборе ребра, ограниченного узлами 10 и 9 или 11 и 10, может появиться окно с цифрами. Эти цифры отображают номер объектов. Выберите цифру, соответствующую нужному ребру.



# Перемещение поверхности

- Выберите пункт меню Surface/Transform. Появится окно Transform.
- Поставьте в разделе **Fix** (закрепление) галочку напротив **Y Axis** и **Z axis** и введите в поле **dX** значение 200.
- Щелкните по поверхности, созданной граничным методом, **Part 3** и подтвердите выбор нажатием средней кнопки мыши.
- Выберите опцию Сору.
- Нажмите кнопку 🕒 Сору
- Закройте окно.

Transform	8 8			
Translate O Scale     Rotate O Mirror	O Reorient			
🗟 Surface 🗢 🛸	Offset 🗸		_	
Fix X Axis dX	: 200	L		
Y Axis dY	: 0			
Dist. 200	Flip		t	4
	Move 💿 Copy			
New CS No.	of Copies: 1			
S	et Top Available ID			
Reset 6	Dy Close			

# 1.4 СОЗДАНИЕ ПРОМЕЖУТОЧНОГО МАТЕРИАЛА (GAP MATERIAL)

При моделировании Вы можете решить, использовать промежуточные элементы или нет.

#### Создание узлов с помощью опции Node Drop

 Выберите Node (привязка к узлам) на панели Selection, нажав на значок ____, и щелкните на иконку Display ID, как показано ниже.



- Щелкните на любой узел. На экране высветится его ID.
   Для отмены опции привязки к узлам нажмите <Esc>.
   Отобразите номера узлов верхней плиты.
- Выберите пункт меню Node/Drop (Project). Появится окно Drop Points/Curves/Nodes.
- Не изменяя установленных в окне параметров, щелкните по узлу 5 (N-5) и подтвердите выбор нажатием средней кнопки мыши.
- Нажмите на кнопку **Surface**, щелкните по верхней грани нижней плиты и подтвердите выбор нажатием средней кнопки мыши.



- Измените опцию **Move** (переместить) на опцию **Сору** (копировать).
- Щелкните на кнопку **Apply** и закройте окно.

#### Создание поверхности граничным методом

- Выберите пункт меню Surface/Blend (Spline). Появится окно Blend.
- Введите в строку **Part ID** номер 4.
- Выделите узлы 5 и 7 и подтвердите выбор щелчком средней кнопки мыши.
- Щелкните на узлы 12 и 10 и подтвердите средней кнопкой мыши.



- Щелкните по кнопке Apply. Будет создана новая поверхность с именем Part 4.
- Закройте окно.

#### Создание поверхности методом экструзии

- Выберите пункт меню Surface/ Sweep (Drag). Появится окно Sweep.
- Убедитесь, что выбрана опция Multiple curves и установлены следующие значения: Distance 200 и Part ID 4.
- Щелкните по ребру на поверхности (прямоугольника), созданной на предыдущем этапе.
- В возникшем окне Vector Definition должна быть выбрана опция Global Axis и в строке Along установлено X-Axis. При необходимости используйте опцию Flip.
- Выполните описанные выше операции для построения поверхностей на основе оставшихся 3 ребер.

#### Перемещение поверхности

- Выберите пункт меню Surface/ Transform. Появится окно Transform.
- Поставьте в разделе Fix (закрепление) галочку напротив Y Axis и Z axis и введите в поле dX значение 200.
- Выберите поверхность, созданную граничным методом, **Part 4** и подтвердите, средней кнопкой мыши.
- Должна быть выбрана опция **Сору** и в поле **Part** введено 4.
- Нажмите Сору.

Выполнение этой операции завершает моделирование промежуточного материала и в целом моделирование поверхностей.

# 1.5 СОЗДАНИЕ ВСПОМОГАТЕЛЬНЫХ КРИВЫХ

#### Перемещение узлов

 Отобразите номера узлов, как показано на рисунке. Выберите пункт меню Node/Transform. Появится панель Transform.



- Выберите узел Node 12 и подтвердите выбор нажатием средней кнопки мыши.
- В появившемся окне зафиксируйте оси X и Z (т.е. поставьте напротив галочки).
   Введите значение -10 в поле dY и выберите опцию Copy.
- Скопируйте узел, щелкнув на кнопку Сору.
- Также выберите узел Node 11 и подтвердите средней кнопкой мыши.
- Зафиксируйте оси X и Z. Введите 10 в поле **d**Y. Нажмите кнопку **Сору**.
- Выберите узел Node 9 и подтвердите средней кнопкой мыши.
- Зафиксируйте оси X и Y, освободив ось Z. Введите 10 в поле dZ. Нажмите кнопку Сору.
- Новым узлам будут присвоены номера ID 13, 14 и 15.
- Закройте окно.

#### Создание узлов через опцию Node Drop (перенос узла)

- Выберите пункт меню Node/Drop (Project). Появится окно Drop Points/Curves/Nodes.
- Не изменяя установок, выберите узлы Nodes 10, 11, 12, 13 и 14 (все узлы на верхнем ребре опорной плиты) и подтвердите выбор щелчком средней кнопки мыши.
- Нажмите на кнопку Surface и щелкните на нижнюю поверхность опорной плиты и подтвердите средней кнопкой мыши.
- Если была выбрана не та поверхность или узел, нажмите на клавиатуре кнопку

   <l

Drop Points/Curves/Nodes 🔳 💡 🛛	
Drop: Along Source 🖌 🔓 Node	57
Dir.: Normal To	
Add to Collector	N-15
Undo	
Reset Apply Close	

- Убедитесь, что выбрана опция Сору.
- Подтвердите копирование узла, щелкнув на кнопку **Apply**.
- Щелкните по узлам 9 и 15 и подтвердите выбор.
- Выберите противоположную грань верхней плиты, на которую будут спроецированы узлы, как показано ниже и подтвердите.

rop:	Along Sour	ce 🗸 🚺	∂Node マ			1	
Dir.:	Normal To	~					
arget:	On Surface	~	& Surface				
Add to	o Collector	1 1	Сору				
	A P	art ID	5				
			Undo				
Reset	: 4	Apply	Close	1		ſ	
		Копиј и 9 пе	рование узло ереносом	B 15		1	
-				1	-		

- Щелкните на кнопку **Apply**, и закройте окно.

#### Выравнивание узлов (опция Align)

Чтобы убедиться, что спроецированные узлы лежат на ребре, используйте опцию Align.

– Выберите пункт меню Node/Align. Появится окно Align Nodes/Elem. Edges.

Align Nodes/Elem. Edges	1 8 23	
To Existing Curves O Line 3 Pt. Circle O Smo 2 Pt. Line O Plan Curve	ar Points oth Points e	
⊙ Nodes ○ Elem	ent Edges	
Move O Copy		1
	Undo	
Reset 占 Apply	Close	Jes to Curves -

- Щелкните на ребро поверхности, на которой должны лежать узлы (на рисунке выделено желтым цветом).
- Выделите все узлы на ребре и подтвердите выбор.
- Нажмите **Apply**.
- Выполните те же действия для всех ребер, на которых размещаются узлы. Это операция нужна для того, чтобы убедиться, что узлы действительно лежат на ребре.

#### Создание кривой по точкам (опция Sketch)

- Выберите пункт меню Curve/Sketch. Появится окно Sketch Curve.
- Не изменяя установленных значений, щелкните на пару узлов, начальный и созданный с помощью опции переноса на предыдущем шаге (например 14 и узел под ним).
- Когда пара узлов выбрана, подтвердите выбор средней нажатием средней кнопки мыши.
- Создайте кривые, как представлено на рисунке ниже.
- Убедитесь, что кривые находятся на объекте Part 5.



*Примечание*: Для того чтобы убедиться, что выделяются именно узлы, следуйте рекомендациям данным ниже.

- Не закрывая окно **Sketch curve**, щелкните на первый узел для первой кривой. Он будет выделен.
- Еще раз щелкните на тот же узел. Появится окно **Point Definition** (описание точки), как показано ниже.

		N-15	
Sketch Met C	0     -15     10       Image: Construction in the second	A N-12 N-12 N-10 N-14	-
	Global Cartesian Close	Дважды щелкните на узел А для вызова окна Point Definition	

- Нажмите на кнопку Node в разделе Snap to (привязать к) и щелкните на тот же узел.
- Это действие обеспечит привязку точки к узлу.

#### Создание узла между точками (опция Between 2 points)

- Нажмите кнопку <F> на клавиатуре для автоматического размещения модели по центру рабочего окна.
- Щелкните на иконку (Flat and Wireframe) для изменения способа отображения.
- Выберите пункт меню Node/Between 2 Points. Появится окно Between 2 Points.
- Проверьте, что опция Nodes at Ends отключена и введите 1 в поле Number of Nodes.
- Щелкните на узлы 2 и 14 для создания узла Node 23. Подтвердите выбор средней кнопкой мыши. Также создайте узлы Node 24 (между узлами 6 и 21) и 25 (между узлами 13 и 1).
- Ниже представлен рисунок, где показано расположение узлов, которые необходимо создать (они заключены в голубых квадратах).
- После выбора всех необходимых узлов нажмите **Apply**.
- Закройте окно.



#### Создание узлов перемещением

- Выберите пункт Node/Transform. Появится окно Transform.
- В разделе **Fix** (закрепление) выберите Y Axis и Z Axis.
- Введите в поле **dX** значение 200 и убедитесь, что в нижней части окна выбрана опция **Сору**.



- Выберите узлы 25, 13, 14, 23, 15 и 24 и подтвердите средней кнопкой мыши. (Смотрите рисунок выше).
- Щелкните кнопку Сору и закройте окно.

#### Выравнивание узлов

Для того чтобы убедиться, что скопированные и первоначальные узлы расположены на ребрах нижней и верхней плит, используйте опцию Align Node. Выберите пункт меню Node/Align. Появится окно Align Nodes/Elem. Edges.

- Щелкните на ребро, на котором лежат узлы, и подтвердите нажатием средней клавиши мыши. Оно выделится.
- Теперь щелкните на все узлы, лежащие на ребре, и подтвердите. Нажмите Apply.
- Выполните те же действия для узлов, расположенных на других ребрах.

### Создание кривой по точкам

- Выберите пункт меню Curve/Sketch. Появится окно Sketch Curve.
- Введите в поле **Part ID** номер 6.
- Не изменяя установленных параметров, щелкните на пару узлов, начальный и созданный на предыдущем шаге методом Drop (например, узлы 23 и противоположный ему). Подтвердите выбор нажатием средней кнопки мыши. Лини, которые должны быть созданы представлены на рисунке ниже.
- Все новые кривые должны быть параллельны глобальной оси Х.
- Нажмите Apply.

nooth ()	roject on 3-D On Plane				29	
Part ID	: 6	]				
	Undo					
t 🕒 Apply	/ Close					
			28 N.2	N-65-81	N-26	N.30
				N-24		
			5-5	S-7	S	3
				122		
			. [ ]			
				N-22		

– После создания всех нужных линий закройте окно.

# 1.6 УПРАВЛЕНИЕ ОБЪЕКТАМИ

- Выберите пункт меню Assembly /Part Manager в меню или нажмите <F11>.
- В колонке ID указаны номера объектов. Щелкните на первую строку. На модели будет выделен красным объект (нижняя плита), соответствующий этому ID.
- В колонке NAME дважды щелкните на имя и измените его. Переименуйте объекты как показано ниже.

ID	NAME	THICKNESS	Elm (Crv,Srf,Oth
1	Ground Plate	0	0 (0/4/0)
2	Rib	0	0 (0/5/0)
3	Filler Material	0	0 (0/4/0)
4	Gap Material	0	0 (0/2/0)
5	Base Curve 5	0	0 (7/0/0)
6	Base Curve 6	0	0 (5/0/0)

# СОХРАНЕНИЕ МОДЕЛИ

Модель можно сохранить в разных форматах.

*Примечание:* узлы в модели использовались только для моделирования. Эти узлы необходимо удалить перед сохранением модели.

Сохранение в **VDB** формате

- Выберите пункт меню File/Save as...
- Выберите папку для хранения и введите имя файла **T-Joint.vdb** в поле **File name**. Нажмите **Save**.

Экспортировать модель в формат IGES.

- Выберите пункт меню File/Export...
- Выберите папку для хранения и введите имя файла T-Joint.igs. Нажмите Save.



# 2. VISUAL WELD

# ЗАДАЧА 1. ВЫПОЛНЕНИЕ СВАРКИ Т-СОЕДИНЕНИЯ.

#### Запуск нового проекта

- Откройте Visual-Weld.
- В главном меню выберите File/Open.
- Выберите файл TJOINT_DATA30.ASC в папке Tutorials/VisualWeld/Tjoint и нажмите Open.

#### Welding Advisor (Мастер установки данных)

- В главном меню выберите Welding/Welding Advisor.
- В результате Welding Advisor активируется и станет доступна панель Project Description (Описании проекта) для ввода данных.

#### Project Description (Описание проекта)

- Введите данные:
- ***Name:** TJOINT.
- Title: ARC Welding of a T-Joint.
- *Working directory: нажмите на иконку 📂. Откроется окно Select working directory. Выберите папку для хранения файлов. Нажмите Select.

Примечание: в названии папок не должно быть кириллицы и пробелов.

- General description: Example on simultaneous double T-joint ARC welding (symmetry condition applied) (Пример выполнения Т-соединения дуговой сваркой. Используется условие симметрии).
- Material description: S355 structural steel.

Proje	ct Descrip	tion	3	×
1	*Name:		TJOINT	
	Title:		ARC Welding of a T-Joint	
2	*Working Directory:		D:\user\Kristen\VisualWeld\Weld_Plan	
3	Description	on		
4	General:	Example o welding (s	n simultaneous double T-Joint ARC ymmertry condition applied)	*
6	Material:	S355 stru	ctural steel	*

Поля обязательные для заполнения отмечены пометкой "*". Остальные поля заполняются по желанию. Для удобства рекомендуется заносить краткие сведения о задаче в раздел **Description**.

После заполнения обязательных полей становится доступным второй шаг (выделенный оранжевым). Разделы, открытые для заполнения выделяются голубым, а уже завершенные этапы зеленым.

Щелкните на кнопку второго этапа или используйте стрелку
 (Next Arrow) для перехода на следующий шаг.

#### Global parameter (Установка глобальных параметров)

Welding Advisor в поле Computation автоматически выбирает и устанавливает нужный тип элементов, основываясь на загруженной модели. В данном примере будут использоваться для расчета элементы "Solid" (твердотельные элементы).

Global	Parameter		🔹 🍞 🗙
	<ul> <li>*Computation —</li> <li>Solid</li> </ul>	2D Cross Section	
2	O Shell-Solid	C 2D In-Plane	
3	C Shells	2D Rotational	
Іерейдите на 3 эта	Ш.		

# **Component Properties (Свойства компонент)**

- Щелкните на значок 🔲 на кнопке 🗟 "Component 🔲 для вызова списка компонент.
- Выделите PLATE1_COMPO и PLATE2_COMPO и нажмите OK.
- В строке *Material выберите материал S355J2G3 из выпадающего списка и щелкните Add.
- Выберите Joints with Filler для определения свойств наплавочного материала.
- Щелкните на значок 🔲 на кнопке 🔽 "Joint 🔲. Выберите J01_WIRE и нажмите ОК.
- В строке *Material выберите в выпадающем списке материал S355J2G3.
- Щелкните Add, чтобы сохранить установки.

Material *Database: C:\Program Files\ESI Group\Visi *Class: All	Material *Database: C:\Program Files\ESI Group\Visual-Enviror *Class: All
Components Doints with Filler  Assign  Component  *Material: S35532G3	③       ○ Components       ③ Joints with Filler         ④       Assign       □         ●       *Joint       □         ●       *Joint       □         ●       *Material:       \$35532G3
Add Component/Joint A Material Thickness PLATE1_COMPO \$355J2G3 NA PLATE2_COMPO \$355J2G3 NA	Image: Component/Joint     Add       Image: Component/Joint     Material       Image: Thickness     J01_wIRE       Image: S355J2G3     NA
Enlarge	Enlarge
еходите на следующий шаг	

# Welding Process (Процесс сварки)

- Выберите General Arc в строке *Process type.
- Установите в строке Energy / unit Length of Weld единицы измерения J/mm и в строке Velocity (скорость): mm/sec.
- Нажмите на значок 🔲 на кнопке 🗟 *Weld Line 🔲 . Выделите строчку **J01 РАТН** и щелкните **ОК**.
- В результате все объекты (Filler Material, Welding Group и др.), соответствующие данному сварному шву, будут автоматически определены.

Weld	ing Process	8
1	*Process Type: General ARC	~
2	🔽 Automatic Energy Calibration	
3	Energy/unit Length of Weld: J/mm	~
	Velocity: mm/sec	~
	Weld Line Weld Pool Energy	
	🔓 *Weld Line 📃 J01_PATH	
6	Filler Material 🔲 J01_WIRE	
0	℅ *Welding Group III J01_LOAD	
8	Reference Line 🔲 J01_REF	
<u> </u>		
	☆ *End Node	
	Start Element 🔲 J01_SEL	

- Нажмите на кнопку Next >> или выберите вкладку Weld Pool.
- Выберите в строке Heat Source (Тепловой источник) из выпадающего меню ARC.
- Введите следующие значения:
  - ***Velocity** (скорость): 33.310.
  - *Start Time (время запуска):0.000.
  - End time (время окончания): 1.441 (автоматически рассчитывается исходя из длины сварочного шва).
- Введите значения в поле ***Estimated**:
  - Length (длина): 9.000 (мм).
  - Width (ширина): 5.000 (мм).
  - **Penetration** (проникновение): 1.500 (мм).
- Нажмите **Next**>> или выберите панель **Energy**.
- Введите*Energy/Unit length (Энергия/единица длины): 280.000.
- ***Efficiency** (эффективность): 1.000.
- Power Ratio (коэффициент мощности): 1.200.

• Length Ratio (коэффициент длины): 0.500.

Поставьте галочку на опции Start/End Energy Ramp и введите следующие значения:

- В поле ***Beginning of Weld** (начало сварки):
  - Length of Ramp (длина площадки): 9.000.
  - Energy Factor (энергетический фактор): 1.500.
- В поле ***Termination of Weld** (завершение сварки):
  - Length of Ramp: 1.000.
  - Energy Factor: 1.000.

Weld Line Weld Pool	Energy	Weld Line   Weld Pool   Ene	rgy
Heat Source:	ARC 🗸	*Energy/Unit length: *Efficiency:	280.000
*Velocity:	33.310	Power Ratio:	1.200
*Start Time:	0.000	Length Ratio:	0.500
End Time:	1.441	V Start/End Energy Ram	ıp
*Estimated		Length of Ramp:	9.000
Length:	9.000	Energy Factor:	1.500
Width:	5.000	*Termination of Weld -	1 000
Penetration:	1.500	Energy Factor:	1.000

– Щелкните на кнопку Add для сохранения заданных параметров сварного шва.

Joint	Source	Start Time	End Time	Velocity	EPUL	Efficiency
J01_PATH	1	0.000	1.441	33.310	280.000	1.000

– Перейдите на 5 шаг

# Cooling Condition (Условия охлаждения)

- Щелкните на значок ☐ на кнопке ^{*}Collector ☐, выберите AIR и нажмите OK.
- Выберите в строке ***Medium** (среда) опцию **Free Air Cooling** (охлаждение на воздухе) и введите в строке **Ambient Temp** (температура окр. среды) значение 20.
- Щелкните на кнопку Add.

Coolin	g Condition		😮 😮 🗙
	Definition           Image: The second	Free Air Cooling	₹ 0dd
	Collector AIR 2	emperature 0.000	Function AIR Heat Exch
			Enlarge
<ul> <li>Перейдите на 6 эта</li> </ul>	ш.		

# Clamping Conditions (Условия закрепления)

- Щелкните на значок □ на кнопке 🗟 *Collector □, выберите CLAMP_01 и нажмите ОК.
- Выберите опцию **Rigid** (жесткие) в поле **Туре** (тип закрепления).
- Поставьте галочки напротив Y и Z в разделе Rigid in direction (закреплении в направлении) и щелкните Add.

Clamping Conditio	n	6
Clamp Definiti	on 📃	
Elastic	⊙ Rigid ∕ OUnclar	nped
Rigid in Direc	tion: Y VZ	] All
		Add
		Collector

- Щелкните еще раз на значок Ш на кнопке ^{Collector} Ш и выберите CLAMP_02.
- Выберите опцию **Rigid** для типа закрепления.
- Поставьте галочку только напротив Y в разделе Rigid in Direction и щелкните кнопку Add.
- Повторите эти операции для соединений:
  - CLAMP_03: выберите Symmetry (условия симметрии) и нажмите Add.
  - CLAMP_04: выберите Elastic (эластичные) и в поле Elastic Stiffness в строке In Plane (в плоскости) введите значение 10.000, а в строке Perpendicular to Plane (перпендикулярно плоскости): 1000.000. Нажмите Add.
  - CLAMP_05: выберите Elastic и в поле Elastic Stiffness в строке In Plane введите значение 10.000 и в строке Perpendicular to Plane: 1000.000. Нажмите Add.

Name	Group	Туре
1=>Clamp	CLAMP_01	Rigid
2=>Clamp	CLAMP_02	Rigid
3=>Clamp	CLAMP_03	Symmetry
4=>Clamp	CLAMP_04	Elastic
5=>Clamp	CLAMP_05	Elastic

- После определения параметров для всех условий закреплений, щелкните на значок
   на кнопке <a href="https://www.science.com/science.com/">ксіатр</a>, выделите все 5 строчек в списке и нажмите ОК.
  - Оставьте строку Name без изменений.
  - Введите *Start time (время запуска): 0.0.
  - Введите ***End time (время завершения):** 600.0.
- Щелкните Add для сохранения заданных условий закрепления.

_ Cla	amping Condition -		
La	3 *Clamp		
Na	ame:	CLAMP_COND_01	
*St	tart Time:	0.000	
*Er	nd Time:	600.000	
		Add	
Щелкните снова	на кнопку	🔉 «Сlamp 📃 , выберите CLAMP	_01,
CLAMP_02 и CLAN	1P_03. Nome fee we		
• Octabbie ctpoky	<b>Name</b> 0e3 M3	зменении.	
<ul> <li>BBEdute *Start ti</li> <li>BBEdute *End tir</li> </ul>	me: 601.0.		
Нажмите на кнопку и CLAMP 03.	🔓 *Clamp	, снова выберите CLAMP_01, CLAMI	<u>}_02</u>

- Оставьте строку Name без изменений.
- Введите ***Start time**: 601.0.
- Введите ***End time**: 3600.0.
- Щелкните по кнопке Add для сохранения параметров условий закрепления.

Name	Clamps	Start Time	End Time
CLAMP_COND	Clamp(1)_CLAMP	0.000	600.000
CLAMP_COND	Clamp(1)_CLAMP	600.000	601.000
CLAMP_COND	Clamp(1)_CLAMP	601.000	3600.000

– Перейдите на шаг 7

# Loads and Deformations (Нагрузки и деформации)

- В данной задаче не учитываются условия нагружения.
- Перейдите на шаг 8

#### Solution Parameter (Параметры решения)

- По умолчанию в разделе Analysis (Анализ) для решения выбраны и тепловая с металлургической (Thermo-Metallurgical) и механическая (Mechanicall) задачи.
- Щелкните на двойную стрелку , для обзора других опций. Для данного примера не изменяйте заданные по умолчанию установки.

Solut	tion Parameter 🛛 🕜 🗙
1	*Analysis
2	Process Start Time: 0.000 *End Time: 2000.000
	*Initial Temperature: 20.000
<b>6</b>	Advanced For a constant of the second

#### – Щелкните Generate Input Data.

Это может занять некоторое время, проверяйте появляющиеся сообщения в окне.

Project conversion into input decks is successful. prj file(s) is/are successfully written. File <u>D\user\Kristen\VisualWeld\Weld Planner ex\00 ex\Results\TJOINT CHK.LOG</u> loaded, .prj files error can be che File <u>D\user\Kristen\VisualWeld\Weld Planner ex\00 ex\Results\TJOINT-1 CHK.LOG</u> loaded, .prj files error can be che File <u>D\user\Kristen\VisualWeld\Weld Planner ex\00 ex\Results\TJOINT-2 CHK.LOG</u> loaded, .prj files error can be che File <u>D\user\Kristen\VisualWeld\Weld Planner ex\00 ex\Results\TJOINT-2 CHK.LOG</u> loaded, .prj files error can be che

После нажатия кнопки Generate Input Data будет создан файл *.vdb. Этот файл содержит всю информацию, относящуюся к проекту и должен использоваться для любых изменений относительно проекта.

Он также используется как файл-источник для Computation Manager (Менеджер вычислений) для проведения расчета проекта.

# Job Submission (Запуск расчета)

- Перейдите в главное меню и выберите Welding > Computation Manager.
- Выберите файл проекта.
- Отметьте все пункты в столбцах Heat Transfer и Mechanical и нажмите Compute (рассчитать).

**Примечание**: В зависимости от возможностей системы расчет может занять некоторое время для получения результатов.

Ячейки становятся зелеными, когда расчет процесса выполнен. Голубой цвет ячеек означает начало работы. При появлении каких-либо ошибок ячейка становится

– При необходимости завершить процесс расчета нажмите Kill Process.

D:\user\Kristen\V	"isualWeld\Weld_Planner_	_ex\00_ex\Results						
Step Name	Active Weld	Initial Time	Final Time	Heat Transf	er	Mechanic	al	~
TJOINT	J01_PATH (0.0)	0.000	600.000					
TJOINT-1		600.000	601.000					
TJOINT-2		601.000	3600.000	V				_
								~

#### Анализ результатов

Для просмотра результатов используется приложение Visual Viewer. Перейти в это приложение можно через пункт меню Applications/Viewer.

– На главной панели выберите Applications/Viewer. Панель Results станет доступной для использования.



Для анализа результатов используются следующие файлы: имя проекта_2_V_POST1000 (можно будет просмотреть результаты расчета термометаллургической задачи) и имя проекта_2_V_POST2000 (результаты расчета механической задачи).

- Откройте файл TJOINT_2_V_POST1000 с помощью пункта File/Open.
- Нажмите на кнопку Contours (поля распределения параметров) Results. Появится окно Contour. Отметьте опцию Node (Banded) в разделе Display Турев и Contour On/Off в разделе Contour.
- Выберите Nodes в списке Component Types и щелкните на строчку TEMPERATURE_NOD. С помощью опции Component Types можно выбрать разные параметры для отображения (температуру, фазовый состав, смещение узлов, размер зерна и др.).
- В рабочем окне появится поле распределения температуры в виде заливки модели.

Пределы легенды можно изменить, для этого щелкните на кнопку

части окна или на панели **Results**. Появится окно **Spectrum Control**. Введите значения верхнего и нижнего предела (1500 и 20) соответственно в строки **Max** и **Min**. Нажмите **Reset**.

Component Types	Layers	Integration
ELEMENTS	<b>v</b>	× ×
GRAIN_SIZE_ELE HEAT_FLUX_ELE X HEAT_FLUX_ELE Y HEAT_FLUX_ELE Z HEAT_FLUX_ELE_M PHASE_PROPORTIC PHASE_PROPORTIC PHASE_PROPORTIC PHASE_PROPORTIC	agnitude DNS_ELE_1 DNS_ELE_2 DNS_ELE_3 DNS_ELE_4 DNS_ELE_5 DNS_ELE_6	

¶i Contour	Spectrum Control	<b>a</b> 9 x
Contour Ranking Vector/Tensor	spectrum control	
Display Types	_	
⊙ Node (Banded) ONode (Smeared)	Range	1500.000
C Element Dides Of Element (Beta)	Max: 1500.000	1401.333
Contour	Min: 20,000	1302.667
Contour On/Off 🛛 Auto Display	# Levels: 15	1204.000
🔲 Global Min/Max 🛛 🗹 Display Min/Max ID		1105.333
	O Integer	1006.667
Components Entities Advanced Transformation		908.000
Component Lypes Layers Integration		809.333
		710.667
TEMPERATURE_NOD		612.000
TEMPERATURE_RATE_NOD	Model Title	513.333
	Result Title	414.667
	t value	316.000
		217.333
	Flip Save RGB	118.667
	Load RGB Reset RGB	20.000
Import Export 🗙 🚺 Apply	Scale: Standard	
Close	Res	et Close



Распределение температуры вдоль шва

В программе есть опция для отображения распределения параметров в разные моменты времени. Для этого нажмите кнопку 🗊 на панели **Results**, появится окно **Animation Control**. Можно включить анимацию (кнопка  $\bigcirc$ ) или же просмотреть каждый шаг процесса по отдельности в любой момент времени.

Animation Control	
Animation	► ► ► Fast
1:0.000000         2:0.090062         3:0.225156         4:0.360250         5:0.450312         6:0.549381         7:0.658357         8:0.778230         9:0.910091         10:1.055137         11:1.183758         12:1.312379         13:1.441000         14:1.621126         ¥:0.001015	States to Animate State Go to : 13 Skip: 1 Count: 56
Amplify All: 1.0 X: 1.0 Static States	Y: 1.0 Z: 1.0
Simultaneous Displ	ay Part Color
	Reset Close
# ЗАДАЧА 2. ВЫПОЛНЕНИЕ ЛАЗЕРНОЙ СВАРКИ ТРУБЫ

#### Запуск нового проекта

- Откройте Visual-Weld.
- В главном меню выберите File/Open.
- Выберите TUBE_DATA30.ASC в папке Tutorials/VisualWeld/Tube и нажмите Open.

#### Welding Advisor (Мастер установки данных)

- В главном меню выберите Welding/Welding Advisor.
- В результате Welding Advisor активируется и станет доступна панель Project Description (Описании проекта) для ввода данных.

#### Project Description (Описание проекта)

- Введите данные:
  - ***Name:** TUBE.
  - Title: Laser welding of a tube (лазерная сварка трубы).
  - ***Working directory:** Нажмите иконку 🔄 и выберите папку для хранения файлов и нажмите Select (При необходимости создайте новую папку).
  - General description: Example on laser welding of thin walled tube (пример лазерной сварки тонкостенной трубы).
  - **Material description:** DP-W-600.

Proje	ect Descrip	tion		×
1	*Name:		TUBE	
	Title: *Working Directory:		Laser welding of a tube	
0			D: \visualweld	
3	Descriptio	n		
	General:	Example	e on laser welding of thin walled tube	*
				Y
9	Material:	DP-W-6	00	*

- Заполнить обязательно необходимо только поля с пометкой "*". Остальные поля заполняются по желанию. Для удобства рекомендуется заносить краткие сведения о задаче в раздел Description.
- После заполнения обязательных полей становится доступным второй шаг (выделенный оранжевым). Разделы, открытые для заполнения выделяются голубым, а уже завершенные этапы зеленым.
- Щелкните на кнопку второго этапа 2 или используйте стрелку (Next Arrow) для перехода на следующий шаг.

#### Global parameter (Установка глобальных параметров)

По умолчанию, Welding Advisor автоматически выбирает и устанавливает нужный тип элементов в поле Computation, основываясь на загруженной модели. В данном примере будет использоваться для расчета опция Shells (оболочки).

Globa	l Parameter		😮 ×
	*Computation —		
	Solid	2D Cross Section	
2	Shell-Solid	🔵 2D In-Plane	
3	<ul> <li>Shells</li> </ul>	2D Rotational	
<ul> <li>Перейдите на 3 эт</li> </ul>	гап 🚺.		

#### **Component Properties (Свойства компонент)**

- Щелкните на значок 🗐 на кнопке 🗟 "Component 🗐 для вызова списка компонент.
- Выделите **COMPONENT_01** и нажмите **OK**.
- В строке *Material выберите материал DP-W-600 из выпадающего списка.
- Установите в строке *Thickness значение 1.000 и щелкните Add.
- Выберите Joints with Filler для определения наплавляемого материала.
- Щелкните на значок ☐ на кнопке [★]Joint ☐. Выберите J01_LOAD и нажмите OK.
- В строке *Material выберите в выпадающем списке материал DP-W-600.
- Установите в строке ***Thickness** значение 1.000.
- Щелкните Add.

Component Properties	Component Properties x
*Database:     C:\Program Files\ESI Group\Visual-Environmenl       *Class:     All	*Database:     C:\Program Files (x86)\ESI Group\Visual-En\       *Class:     All
③       ○ Components       ○ Joints with Filler         ④       Assign         ↓       *Component       □         *Material:       DP-W-600       ▼         *Thickness:       1.000       ▲dd	③     ○ Components     ● Joints with Filler       ④     Assign       ⑥     Image: Second seco
Component/Joint     Material     Thickness       Image: Component/Joint     Image: Component/Joint     Image: Component/Joint     Image: Component/Joint       Image: Component/Joint	Component/Joint A Material Thickness     J01_LOAD DP-W-600 1.000

#### Welding Process (Процесс сварки)

- Выберите Laser в строке *Process type.
- Установите в строке Energy / unit Length of Weld единицы измерения J/mm и в строке Velocity (скорость): mm/sec.
- Нажмите на значок □ на кнопке № ^{*Weld Line} . Выделите строчку J01 РАТН и щелкните ОК.
- В результате все объекты ниже, кроме Filler material, соответствующие данному сварному шву, будут автоматически определены.
- Щелкните на значок 🗐 на кнопке 🔽 Filler Material 🗐. В появившемся списке выберите Filler_J01_LOAD.

*Process Type: Laser			~
Automatic Energy Ca	alibrati	on	
Energy/unit Length of W	/eld:	J/mm	~
Velocity:		mm/sec	~
Weld Line Weld Pool	Ener	9Y	
🔉 *Weld Line		J01_PATH	
Filler Material	≣	J01_LOAD	
🔓 *Welding Group		J01_LOAD	
Reference Line		J01_REF	
🔓 *Start Node		J01_SNO	
Rend Node		J01_ENO	
*Start Element		J01_SEL	

- Выберите вкладку Weld Pool.
- В строке Heat Source (Тепловой источник) автоматически будет выбрана опция Beam.
- Введите следующие значения:
  - ***Velocity** (скорость): 66.667.
  - *Start Time (время запуска):0.000.
  - End time (время окончания): 0.450 (автоматически рассчитывается исходя из длины сварочного шва).
- Введите значения в поле ***Estimated** (оцениваемые):
  - Тор Dia (длина): 1.000 (мм).
  - **Bottom Dia** (ширина): 1.000 (мм).
  - **Penetration** (проникновение): 2.000 (мм).
- Нажмите **Next**>> или выберите панель **Energy**.
- Введите значения:
  - *Energy/Unit length (Энергия/единица длины): 18.000.

- ***Efficiency** (эффективность): 1.000.
- Отметьте Start/End Energy Ramp и введите следующие значения:
  - В поле ***Beginning of Weld** (начало сварки):
    - Length of Ramp (длина площадки): 4.000.
    - Energy Factor (энергетический фактор): 1.500.
  - В поле ***Termination of Weld** (завершение сварки):
    - Length of Ramp: 1.000.
    - Energy Factor: 1.000.

Weld Line Weld Pool	Energy	Weld Line   Weld Pool   Ener	rgy
		*Energy/Unit length:	18.000
Heat Source:	Beam 💙	*Efficiency:	1.000
*Velocity:	66.667		
*Start Time:	0.000		
End Time:	0.450	Start/End Energy Ram	P
*Estimated		Length of Ramp:	4.000
Top Dia.:	1.000	Energy Factor:	1.500
Bottom Dia 1	1.000	*Termination of Weld -	
bottom blan		Length of Ramp:	1.000
Penetration:	2.000	Energy Factor:	1.000

– Щелкните на кнопку Add для сохранения заданных параметров сварного шва.

Joint	Source	Start Time	End Time	Velocity	EPUL	Efficiency
J01_PATH	1	0.000	0.450	66.667	18.000	1.000

– Перейдите на 5 шаг

# Cooling Condition (Условия охлаждения)

- Щелкните на значок ☐ на кнопке [★]Collector ☐ , выберите sheLL AIR HEAT EXCHANGE и нажмите OK.
- Выберите в строке *Medium (среда) опцию Free Air Cooling (охлаждение на воздухе) и введите в строке Ambient Temp (температура окр. среды) значение 20.
- Щелкните на кнопку Add для изменения условий теплообмена.

Cooli	ng Condition		😮 ×
1 2 3 4	Definition          Definition         Image: Collector         *Medium:         *Ambient Temp.:	Free Air Cooling	
6	Collector	à Tanacashura	Add
<b>2</b> (3)	SHELL_AIR_HEAT	<u></u> 20.000	SHELL_AIR_HEAT
			Enlarge
	6		

– Перейдите на 6 этап 🔛.

## Clamping Conditions (Условия закрепления)

- Щелкните на значок □ на кнопке [©] ^{*}Collector □, выберите CLAMP_01 и нажмите OK.
- Выберите опцию Unclamped (свободные) в поле Туре (тип закрепления).
- Нажмите Add.

Clamp	oing Condition		8
	Clamp Definition —		
	🔓 *Collector		
2			
3		💽 Rigio	
		0	]
9			
6			
<b>B</b>			
			Add

- − Ниже щелкните на кнопку ^{Сатр}, выберите CLAMP_01 и нажмите ОК.
  - Оставьте строку Name без изменений.
  - Введите ***Start time** (время запуска): 0.0.
  - Введите ***End time** (время завершения): 3600.0.
- Щелкните Add.

Clamping Condition	
🗟 *Clamp	
Name:	CLAMP_COND_01
*Start Time:	0.000
*End Time:	3600.000
	Add

– Перейдите на шаг 7 🧖.

# Loads and Deformations (Нагрузки и деформации)

- В данной задаче не учитываются условия нагружения.
- Перейдите на шаг 8

#### Solution Parameter (Параметры решения)

- По умолчанию в разделе Analysis выбраны для решения тепловая с металлургической (Thermo-Metallurgical) и механическая (Mechanical) задачи. Оставьте включенными обе опции.
- В строке *Initial Temperature автоматически установлено значение 20. Щелкните на двойную стрелку для обзора других опций.
- Поставьте галочку напротив Non-Linear Geometry и User-defined Solution Parameters (выберите Clamping) (параметры решения, задаваемые пользователем).

Solut	tion Parameter	😮 ×
1	*Analysis	] Mechanical
2	Process Start Time: 0.000	
3	*End Time: 3600.000	
4	*Initial Temperature: 20.000	
6	Advanced	\$
6	<ul> <li>Post Processing Files</li> <li>Minimum</li> <li>Normal</li> </ul>	Detailed
	Disk space	Normal
	Von-Linear Geometry	
	Viser-defined Solution Parameter	s
	Olamping ○ U	Inclamping
	*Thermo-Metallurgical: D:\02_	ex\01_welding_wadv_ther.par
	*Mechanical: D:\02_	ex\01_welding_wadv_mech.par
		Generate Input Data

- Щелкните Generate Input Data для экспорта всех файлов проекта в директорию проекта.

После нажатия кнопки Generate Input Data будет создан файл *.vdb. Этот файл содержит всю информацию, относящуюся к проекту и должен использоваться для любых изменений относительно проекта.

Он также используется как файл-источник для Computation Manager (Менеджер вычислений) для проведения расчета проекта.

#### Job Submission (Запуск расчета)

- Перейдите в главное меню и выберите Welding > Computation Manager.
- Выберите файл проекта. Им должен быть TUBE.vdb.
- Отметьте все пункты в столбцах Heat Transfer и Mechanical и нажмите Compute (рассчитать).

**Примечание**: В зависимости от возможностей системы расчет может занять некоторое время.

Ячейки становятся зелеными, когда расчет процесса выполнен. Голубой цвет ячеек означает начало расчета. При появлении каких-либо ошибок используется оранжевый

– При необходимости завершить процесс расчета нажмите Kill Process.

D:\user\Kristen\V	/isualWeld\Weld_Planner_	_ex\02_ex\Results					
Step Name	Active Weld	Initial Time	Final Time	Heat Transfe	er 🛛	Mechanica	~
TUBE	J01_PATH (0.0)	0.000	3600.000				
							~

#### Анализ результатов

Для просмотра результатов используется приложение Visual Viewer. Перейти в это приложение можно через пункт меню Applications/Viewer.

– На главной панели выберите Applications/Viewer. Панель Results станет доступной для использования.



Для анализа результатов используются файлы: имя проекта_V_POST1000 (можно будет просмотреть результаты расчета тепловой и металлургической задач) и имя проекта_V_POST2000 (результаты расчета механической задачи).

– Откройте файл TUBE_V_POST2000.fdb с помощью пункта File/Open. Нажмите на кнопку Contour (иконка ☑) на панели Results и выберите в возникшем окне параметр для изучения. Например, SHELL_SURF_STRESSES_NOD. Выберите шаг

расчета в окне Animation control. (Чтобы его вызвать нажмите на иконку **h** на панели **Results**).

Contour		■ ? ×
Contour Ranking Vect	or/Tensor	
Display Types		
<ul> <li>Node (Banded)</li> </ul>	🔘 Node (Sme	eared)
C Element	🔲 Nodes Of I	Element (Beta)
Contour		
🗹 Contour On/Off	🗹 Auto Displ	ay
🔲 Global Min/Max	🔽 Display Mi	n/Max ID
Components Entities	Advanced   Tra	ansformation
Component Types	Layers	Integration
NODES	~	~
SHELL_SURF_GRAIN_SI	ZE_NOD_INF	
SHELL_SURF_GRAIN_SI	ZE_NOD_SUP	
SHELL SURF STRESSES	NOD INF XX	
SHELL_SURF_STRESSES	NOD_INF ZZ	
SHELL_SURF_STRESSES	NOD INF XY	
SHELL_SURF_STRESSES		Misse
SHELL_SURF_STRESSES	S_NOD_INF_Vor	sca
SHELL_SURF_STRESSES	NOD_INF_Firs	t Princ.
SHELL_SURE_STRESSES	NOD INF Thir	rd Princ
Import Export	×	Apply
		Close

Величина смещения узлов, происходящей во время и после сварки, как правило, бывает достаточно мала. Для лучшей наглядности можно воспользоваться функцией увеличения масштаба смещения. В окне Animation control в разделе Amplify

(увеличение) введите значение в поле All, либо в одно из X, Y или Z. В итоге масштаб смещения будет увеличен в зависимости от введенного числа, что отразится на экране.

imation Control	
Animation	
Slow 🕞	
States	
0	0€
1:0.000000	States to Animate
3: 3.000000	
4:3600.000000	
	State
	Go to : 4
	Count: 4
Amplify	
All: 40.0 X: 40.	0 Y: 40.0 Z: 40.0
Static States	
🔲 Initial Mesh	F Part Colo
Simultaneous	Display
Multi Stat	es
	Reset Close

#### H.T. ADVISOR

SHELL_SURF_STRESSES_NOD_INF YZ(L1) min=-103.362 at NODE 1158 max=106.214 at NODE 28

106.214 92.242 78.271 64.299 50.327 36.356 22.384 8.412 -5.560 -19.531 -33.503 -47.475 -61.446 -75.418 -89.390 -103.362	

#### Использование опции Amplify

# ЗАДАЧА З. ВЫПОЛНЕНИЕ СВАРКИ СТЫКОВОГО СОЕДИНЕНИЯ

#### Запуск нового проекта

- Откройте Visual-Weld.
- В главном меню выберите File/Open.
- Выберите LASER_16MNCR5DATA1.ASC из папки Tutorials/VisualWeld/Laser_Welding и нажмите Open.

#### Welding Advisor (Мастер установки данных)

- В главном меню выберите Welding/Welding Advisor.
- В результате Welding Advisor активируется и станет доступна панель Project Description (Описании проекта) для ввода данных.

#### **Project Description**

- Введите данные:
  - ***Name:** LASER_16mncs5.
  - ***Working directory:** выберите папку для хранения файлов. Рекомендуется создавать отдельную папку для каждого нового проекта. В названиях папок не должно быть пробелов и кириллицы.
  - General description: Example on laser welding of a butt joint (Пример выполнения лазерной сварки стыкового соединения.).
  - Material description: 16MnCr5.

Proje	ect Descrip	otion		?) ×
ก	*Name: Title: *Working Directory:		LASER_16MNCR5	
-			Laser Welding of a Power Train Sp	ecimen
2			D:\LASER_16MNCR5\Results	
3	Descripti	on		
3	General:	Example of speciment	Example on laser welding of a butt joint specimen	
5	Material:	16MnCr5		< >

После заполнения обязательных полей "*" становится доступным второй шаг (выделенный оранжевым). Разделы, открытые для заполнения выделяются голубым, а уже завершенные этапы зеленым.

Щелкните на кнопку второго этапа или используйте стрелку (Next Arrow) для перехода на следующий шаг.

# Global parameter (Установка глобальных параметров)

Welding Advisor автоматически выбирает и устанавливает нужный тип элементов в поле Computation, основываясь на загруженной сетке. В данном примере будет использоваться для расчета опция "Solid" (твердотельные элементы).

Globa	l Parameter	😮 ×
	*Computation	C 2D Cross Section
2	O Shell-Solid	2D In-Plane
<b>3</b>	C Shells	C 2D Rotational
Перейдите на 3 эта	П.	

#### Component Properties (Свойства компонент)

- Щелкните на значок 🔲 на кнопке 🗟 "Component 🔲 для вызова списка компонент.
- Выделите **СОМРОНЕНТ_01** и нажмите **ОК**.
- В строке *Material выберите в выпадающем списке материал 16MnCr5 и щелкните Add.
- Выберите Joints with Filler для определения наплавочного материала.
- Щелкните на значок 🗐 на кнопке 🕞 *Joint 🗐 для вызова списка соединений. Выберите J01 WIRE и нажмите ОК.
- В строке *Material выберите в выпадающем списке материал 16MnCr5.
- Щелкните Add, чтобы сохранить установки.

Component Prope	rties	(S) × (	Com	oonent Prope	rties		<b>?</b> >
Material *Database:	C:\Program Files\ESI Grou	p\Visual-Enviror	1	Material	C:\Program Files\	\ESI Group\Visual-Enviro	r 🕞
2 *Class:	All	~	2	*Class:	All		~
Ocomponent: C Assian	s 🔿 Joints with	Filler	3		s 💽 Ja	oints with Filler	
4 Comport	nent 📃		4	🎝 *Joint			
*Material:	16MnCr5	~	5	*Material:	16MnCr5		*
		Add	6			Ad	d
Component/Jo	pint 🔥 Material	Thickness		Component/Jo	oint 🔥 Mater	rial Thickness	
	_01 16MnCr5	NA	8	J01_WIRE	16Mn	ICr5 NA	
		Enlarge				Enl	arge
– Перех	олите на спелую	ший шаг					

#### Welding Process (Процесс сварки)

- Выберите Laser в строке *Process type.
- Установите в строке Energy / unit Length of Weld единицы измерения J/mm и в строке Velocity (скорость): mm/s.
- Нажмите на значок 🔲 на кнопке 🗟 "Weld Line 🔲 . Выделите строчку **J01 РАТН** и щелкните **ОК**.
- В результате все объекты, такие как Filler Material, Welding Group и т.д., относящиеся к данному сварному шву, будут автоматически определены.

Weld	ing Process	3
1	*Process Type: Laser	× •
2	🔽 Automatic Energy Calibration	n
3	Energy/unit Length of Weld:	J/mm
4	Velocity:	mm/sec
	Weld Line Weld Pool Energ	у
	😽 "Weld Line 📃 🗉	J01_PATH
0	🔓 Filler Material 🛛 🔳	J01_WIRE
7	🔓 "Welding Group 🔲	J01_LOAD
8	Reference Line	J01_REF
	🔓 *Start Node 📃	J01_SNO
	🔓 *End Node 📃	J01_ENO
	😓 *Start Element 🛛 📃	J01_SEL

- Нажмите кнопку Next >> или выберите вкладку Weld Pool.
- В строке Heat Source (Тепловой источник) автоматически будет выбран Beam (луч).
- Введите следующие значения:
  - ***Velocity** (скорость): 10.000.
  - ***Start Time** (время запуска):0.000.
  - End time (время окончания): 2.000 (автоматически рассчитывается исходя из длины сварочного шва).
- Введите значения в поле *Estimated:
  - Length (длина): 3.000 (мм).
  - Width (ширина): 2.000 (мм).
  - **Penetration** (проникновение): 2.000 (мм).
- Нажмите Next>> или выберите панель Energy.
- Введите *Energy/Unit length (Энергия/единица длины): 28.000.
- ***Efficiency** (эффективность): 1.000.

– Поставьте галочку напротив опции Start/End Energy Ramp.

		Weld Line Weld Pool En	ergy
		*Energy/Unit length:	28.000
Weld Line Weld Pool	Energy	*Efficiency:	1.000
Heat Source:	Beam 💌		
*Velocity:	10.000	✓ Start/End Energy Ran	קו
*Start Time:	0.000	User Defined Function	1
End Time:	3.000	<ul> <li>*Beginning of Weld —</li> <li>Length of Ramp:</li> </ul>	3.000
*Estimated		Energy Eactor:	1.500
Top Dia.:	3.000	- *Termination of Wold -	
Bottom Dia.:	2.000	Length of Ramp:	3.000
Penetration:	2.000	Energy Factor:	0.750

– Щелкните на кнопку Add.

Joint 🔥 🔼	Source	Start Time	End Time	Velocity	EPUL	Efficiency
J01_PATH	1	0.000	3.000	10.000	140.000	1.000

– Перейдите на 5 шаг

#### Cooling Condition (Условия охлаждения)

- Щелкните на значок 🔲 на кнопке 🗟 *Collector 📃 , выберите SOLID_AIR_HEAT_EXCHANGE и нажмите OK.
- Выберите в строке *Medium (среда) опцию Free Air Cooling (охлаждение на воздухе) и введите в строке Ambient Temp (температура окружающей среды) значение 20.
- Щелкните на кнопку Add для изменения условий теплообмена.

Cooli	ng Condition		😮 ×
1	Definition		
2	*Medium:	Free Air Cooling	~
3	*Ambient Temp.:	20.000	
4			
6			Add
6	Collector 🔥	Temperature	Function
<b>7</b> <b>8</b>	P_SOLID_AIR_H	20.000	P_SOLID_AIR_H
			Enlarge
	6		

– Перейдите на 6 этап 🛄.

#### Clamping Conditions (Условия закрепления)

- Выберите опцию **Rigid** (жесткое закрепление) в поле **Туре** (тип закрепления).
- Поставьте галочку напротив Z в разделе Rigid in direction (закреплении в направлении) и щелкните Add.

amping Condition	3	
Clamp Definition		
Type Elastic Symmetry	<ul> <li>⊙ Rigid</li> <li>◯ Unclamped</li> </ul>	
Rigid in Direction:	Z AII	
=	Add	

- Щелкните еще раз на значок списка на кнопке 🗟 Collector 🔲 и выберите CLAMP_02.
- Выберите опцию **Rigid** для типа закрепления.
- Поставьте галочку только напротив **Y** и **Z** в разделе **Rigid in Direction** и щелкните кнопку **Add**.
- Повторите эти операции для следующих закреплений:
  - CLAMP_03: выберите Symmetry и нажмите Add.
  - CLAMP_04: выберите Rigid и поставьте в поле Rigid in Direction галочку напротив Z. Нажмите Add.

Name	Group	Туре
1=>Clamp	CLAMP_01	Rigid
2=>Clamp	CLAMP_02	Rigid
3=>Clamp	CLAMP_03	Symmetry
4=>Clamp	CLAMP_04	Rigid

- После определения параметров для всех закреплений, щелкните на значок на кнопке
   *Clamp
   , выделив все 4 строчки в списке, и нажмите ОК.
  - Оставьте строку Name без изменений.
  - Введите *Start time (время запуска): 0.0.
  - Введите ***End time** (время завершения): 600.0.
- Щелкните Add для сохранения заданных условий закрепления.

	<ul> <li>Clamping Condition -</li> </ul>	
	🔓 *Clamp	
	Name:	CLAMP_COND_01
	*Start Time:	0.000
	*End Time:	600.000
		Add
Щелкните снова на и СLAMP_03.	а кнопку 🗟 *Сla	атр 🔲, выберите CLAMP_01, CLAMP_02
• Оставьте строк	у Name без изм	енений.
• Введите в стро	ку <b>*End time</b> : 6	01.0.

- - Оставьте строку Name без изменений.
  - Введите в строку ***End time**: 3600.0.
- Щелкните по кнопке Add для сохранения параметров условий закрепления.

Name	Clamps	Start Time	End Time
CLAMP_COND	Clamp(1)_CLAMP	0.000	600.000
CLAMP_COND	Clamp(1)_CLAMP	600.000	601.000
CLAMP_COND	Clamp(1)_CLAMP	601.000	3600.000

– Перейдите на шаг 7



- - В данной задаче не учитываются условия нагружения.
  - Перейдите на шаг 8

#### Solution Parameter (Параметры решения)

- По умолчанию в paзделе **Analysis** (Анализ) выбран расчет и тепловой с металлургической (Thermo-Metallurgical) и механической (Mechanical) задач. В данном примере будут решаться обе задачи.
- Введите в строку *Initial Temperature: 20.
- Щелкните на двойную стрелку Для обзора других опций. Для данного примера не изменяйте заданные по умолчанию установки.

Solut	ion Parameter 🔹 😮 🗙
1	*Analysis           Thermo-Metallurgical         Mechanical
<b>2</b> 3	Process Start Time: 0.000 *End Time: 3600.000
4	*Initial Temperature: 20.000
6	Advanced ₹
6	Generate Input Data

 Щелкните Generate Input Data для экспорта всех файлов проекта в директорию проекта.

Это может занять некоторое время, проверяйте появляющиеся сообщения в окне.

e	Project conversion into input decks is successful. .prj file(s) is/are successfully written.	~
Conso	File <u>D\user\Kristen\VisualWeld\Weld</u> Planner ex\00 ex\Results\TJOINT CHK.LOG loaded, p File <u>D\user\Kristen\VisualWeld\Weld</u> Planner ex\00 ex\Results\TJOINT-1 CHK.LOG loaded,	orj files error can be che prj files error can be ch
-	File <u>D:\user\Kristen\VisualWeld\Weld</u> Planner ex\UU ex\Results\TJUINT-2_CHK.LUG loaded,	prj files error can be cr 💌 🛛

После нажатия кнопки Generate Input Data будет создан файл *.vdb. Этот файл содержит всю информацию, относящуюся к проекту и должен использоваться для любых изменений относительно проекта.

Он также используется как файл-источник для Solver Manager (Менеджер решателя), чтобы провести расчет проекта.

#### Job Submission (Запуск расчета)

- Перейдите в главное меню и выберите Welding > Computation Manager.
- Выберите файл проекта. Это должен быть файл LASER_16MNCR5.vdb.
- Отметьте все пункты в столбцах Heat Transfer и Mechanical и нажмите Compute (рассчитать).

**Примечание**: В зависимости от возможностей системы расчет может занять некоторое время.

Ячейки становятся зелеными, когда расчет процесса выполнен. Голубой цвет ячеек означает начало расчета. При появлении каких-либо ошибок ячейки становятся

– При необходимости завершить процесс расчета нажмите Kill Process.

D:\user\Kristen\Visu	aWeld\Weld_Planner_	_ex\05_ex				
Step Name	Active Weld	Initial Time	Final Time	Heat Transfer	Mechanical	^
LASER_16MNCR5	J01_PATH (0.0)	0.000	600.000			
LASER_16MNCR		600.000	601.000	V	 <b>V</b>	
LASER_16MNCR		601.000	3600.000		 <b>V</b>	 _
						~

#### Анализ результатов

Для просмотра результатов используется приложение Visual Viewer.

- На главной панели выберите Applications/Viewer.
- Панель **Results** становится доступной для использования.



Для анализа результатов используются файлы: имя проекта_V_POST1000 (можно будет просмотреть результаты расчета термо-металлургической задачи) и имя проекта_V_POST2000 (результаты расчета механической задачи).

- Откройте файл LASER_16MNCR5_2_V_POST1000 с помощью пункта File/Open.
- Нажмите на кнопку Contours (поля распределения параметров) Results. Появится окно Contour. Отметьте опцию Node (Banded) в разделе Display Types и Contour On/Off в разделе Contour.



- Выберите Nodes в списке Component Types и щелкните на строчку TEMPERATURE_NOD.
- Выберите интересующий шаг расчета. Для этого нажмите на иконку *на панели* Results. В появившемся окне Animation control выберите в столбце последний шаг расчета. Закройте окно.
- В результате появится поле в виде заливки объекта. Пределы легенды поля можно

изменить, для этого щелкните на кнопку 🗾 в нижней части окна Contour или

**на** панели **Results**. Появится окно **Spectrum Control**. Ведите значения верхнего и нижнего предела соответственно в строки **Max** и **Min**. Нажмите **Reset**.

Поскольку учитывалось условие симметрии, в рабочем окне отображается только половина модели. При необходимости можно отобразить деталь полностью.

• На панели Selection выберите привязку к узлам.



• Выберите Results/model symmetry. Появится окно Model symmetry. Отметьте User Defined Plane и в новом окне выберите 2/3Points. Щелкните по 3 узлам на модели, где должна проходить плоскость симметрии и нажмите OK.



Автоматически будет построена плоскость симметрии и вторая половина модели. Положение плоскости можно регулировать, вводя соответствующие значения в строку **Offset** (смещение).

Отображение плоскости симметрии можно отключить. Щелкните Plane On/Off.



# ЗАДАЧА 4. ВЫПОЛНЕНИЕ МНОГОПРОХОДНОЙ СВАРКИ ТРУБЫ

## Запуск нового проекта

- Откройте Visual-Weld.
- В главном меню выберите File/Open.
- Выберите **3PASS_PIPE_DATA30.ASC** в папке **Tutorials/VisualWeld/3PASS_PIPE** и нажмите **Open**.



## Welding Advisor (Мастер установки данных)

- В главном меню выберите Welding/Welding Advisor.
- В результате Welding Advisor активируется и станет доступна панель Project Description (Описании проекта) для ввода данных.

## **Project Description**

- Введите данные:
  - *Name: 3PASS PIPE.
  - **Title:** Multi Pass Welding of a Pipe.
  - *Working directory: выберите нужную папку (При необходимости создайте новую папку).
  - General description: Demonstration Example for Multi-Pass Welding of a Pipe (Показательный пример выполнения многопроходной сварки трубы).
  - Material description: S355J2G3. •

ct Descript	tion		1
*Name:		3PASS_PIPE	
Title:		Multi Pass Welding of a Pipe	
*Working Di	rectory:	D:\visualweld\3PassWeld	
Descriptio	n		
General:	Demons	stration Example for Multi-Pass Welding of a Pipe	
Matarial	S35532	G3	*
Material:			*

Заполнить обязательно необходимо только поля с пометкой "*". Остальные поля заполняются по желанию. Для удобства рекомендуется заносить краткие сведения о задаче в раздел Description.

После заполнения обязательных полей становится доступным второй шаг (выделенный оранжевым). Разделы, открытые для заполнения выделяются голубым, а уже завершенные этапы зеленым.

2) или используйте стрелку 📄 (Next – Щелкните на кнопку второго этапа Arrow) для перехода на следующий шаг.



# Global parameter (Установка глобальных параметров)

Welding Advisor автоматически выбирает и устанавливает нужный тип элементов в поле Computation, основываясь на загруженной модели. В данном примере будет использоваться для расчета элементы "Solid" (твердотельные элементы).

~*Computation	
Solid	2D Cross Section
<ul> <li>Shell-Solid</li> </ul>	2D In-Plane
3 Shells	2D Rotational
4	

## **Component Properties (Свойства компонент)**

- В строке Material выберите папку vweld_matdb.mat.
- Щелкните на значок 🔲 на кнопке 🗟 "Component 🔲 для вызова списка компонент.
- Выберите PIPE1_COMPO и PIPE2_COMPO и нажмите OK.
- В строке Material выберите материал S355J2G3 из выпадающего списка и щелкните Add.
- Отметьте Joints with Filler для определения свойств наплавочного материала.
- Щелкните на значок списка на кнопке ↓ Joint □. Выберите J01_WIRE, J02 WIRE и J03 WIRE, нажмите OK.
- В строке Material выберите в выпадающем списке материал S355J2G3.
- Щелкните Add, чтобы сохранить установки.

Com	ponent Properties 🔹 👔	× Com	ponent Propert	ies	😮 ×
1	Material *Database: \Three-Weld_Pipe\vweld_matdb.mat *Class: All		Material *Database: *Class:	\Three-Weld_Pipe\vv	weld_matdb.mat
3	Components     Joints with Filler  Assign      K *Component		Components Assign	<ul> <li>Joint:</li> </ul>	s with Filler
6	*Material: X80TA1050	6	*Material:	X80TA1050	~
6	Add				Add
	Component/Joint 📐 Material 🛛 Thickness		Component/Join	t 📐 Material	Thickness
8	PIPE1_COMPO X80TA1050 NA		J01_WIRE	×80TA1050	NA
	PIPE2_COMPO X80TA1050 NA		J02_WIRE	×80TA1050	NA
			J03_WIRE	×80TA1050	NA
	Enlarge				Enlarge
	<ul> <li>Переходите на следующий шаг</li> </ul>	4			

## Welding Process (Процесс сварки)

- Выберите General Arc в строке *Process type.
- Установите в строке Energy / unit Length of Weld единицы измерения J/mm и в строке Velocity (скорость): mm/s.
- Нажмите на значок ☐ на кнопке [™] weld Line ☐. Выделите строчку J01_PATH и шелкните OK.
- В результате все объекты (Filler Material, Welding Group и др.), соответствующие данному сварному шву, будут автоматически определены.

Weld	ling Process	8					
1	*Process Type: General ARC	*					
2	V Automatic Energy Calibration						
3	Energy/unit Length of Weld: ]/mm						
4	Velocity: mm/sec	~					
	Weld Line Weld Pool Energy						
	😽 "Weld Line 🔲 J01_PATH						
6	↓ Filler Material						
0	😓 *Welding Group 📃 J01_LOAD						
8	Reference Line						
	Start Node						
	😽 *End Node 📃 J01_ENO						
	😽 *Start Element 📃 J01_SEL						

- Нажмите кнопку Next >> или выберите вкладку Weld Pool.
- Введите следующие значения:
  - ***Velocity** (скорость): 16.667.
  - *Start Time (время запуска):0.000.
  - End time (время окончания): (автоматически рассчитывается исходя из длины сварочного шва).
- Введите значения в поле ***Estimated**:
  - Length (длина): 12.500 (мм).
  - Width (ширина):10.000 (мм).
  - **Penetration** (проникновение): 6.000 (мм).
- Нажмите Next>> или выберите панель Energy.
- Введите *Energy/Unit length (Энергия/единица длины): 600.000.
- ***Efficiency** (эффективность): 0.85.
- Power Ratio (коэффициент мощности): 1.200.
- Length Ratio (коэффициент длины): 0.500.

Поставьте галочку напротив Start/End Energy Ramp.

#### Щелкните Add.

Weld Line - Weld Pool	Foeray	Weld Line Weld Pool Ene	rgy
Weld Line Wold 1 ool	Energy	*Energy/Unit length:	600.000
Heat Source:	ARC 💙	*Efficiency:	1.000
*Velocity:	16.667	Power Ratio:	1.200
*Start Time:	0.000	Length Ratio:	0.500
End Time:	21.826	Start/End Energy Ram	P
*Estimated		Length of Ramp:	12.500
Length:	12.500	Energy Factor:	1.500
Width	10.000	*Termination of Weld –	
mach		Length of Ramp:	12.500
Penetration:	6.000	Energy Factor:	0.750

- Нажмите на значок 🗉 на кнопке 🔽 че 🛄 . Выделите строчку **J02 РАТН** и щелкните **ОК**.
- Нажмите кнопку Next >> или перейдите на вкладку Weld Pool.
- Выберите в строке Heat Source (Тепловой источник) из выпадающего меню ARC.
- Введите следующие значения:
  - ***Velocity** (скорость): 16.667.
  - *Start Time (время запуска):25.000.
  - End time (время окончания): 47.620 (автоматически рассчитывается исходя из длины сварочного шва).
- Ввелите значения в поле *Estimated:
  - Length (длина): 12.500 (мм).
  - Width (ширина): 10.000 (мм).
  - Penetration (проникновение): 6.000 (мм).
- Hажмите Next>> или выберите панель Energy.
- Введите*Energy/Unit length (Энергия/единица длины): 600.000.
- *Efficiency (эффективность): 1.000. •
- Power Ratio (коэффициент мощности): 1.200. •
- Length Ratio (коэффициент длины): 0.500. •

Поставьте галочку напротив опции Start/End Energy Ramp и нажмите Add.

Weld Line Weld Pool	Energy	Weld Line Weld Pool Ener	rgy
Heat Source:	ARC 🗸	*Energy/Unit length: *Efficiency:	600.000 1.000
*Velocity:	16.667	Power Ratio:	1.200
*Start Time:	25.000	Length Ratio:	0.500
End Time:	47.620	Start/End Energy Ram	P
*Estimated		Length of Ramp:	12.500
Length:	12.500	Energy Factor:	1.500
Width:	10.000	<ul> <li>*Termination of Weld</li> <li>Length of Ramp:</li> </ul>	12.500
Penetration:	6.000	Energy Factor:	0.750

- Нажмите на значок ☐ на кнопке [™] weld Line ☐ для вызова списка швов.
   Выделите строчку J03 РАТН и щелкните ОК.
- Нажмите кнопку Next >> или перейдите на вкладку Weld Pool.
- Выберите в строке Heat Source (Тепловой источник) из выпадающего меню ARC.
- Введите следующие значения:
  - ***Velocity** (скорость): 16.667.
  - *Start Time (время запуска): 50.000.
  - End time (время окончания): 72.826 (автоматически рассчитывается исходя из длины сварочного шва).
- Введите значения в поле ***Estimated**:
  - Length (длина): 12.500 (мм).
  - Width (ширина): 10.000 (мм).
  - **Penetration** (проникновение): 6.000 (мм).
- Нажмите Next>> или выберите панель Energy.
- Введите *Energy/Unit length (Энергия/единица длины): 600.000.
- ***Efficiency** (эффективность): 1.000.
- Power Ratio (коэффициент мощности): 1.200.
- Length Ratio (коэффициент длины): 0.500.
- Поставьте галочку напротив опции Start/End Energy Ramp и нажмите Add.

Weld Line Weld Pool B	Energy	Weld Line   Weld Pool Ene	rgy
Heat Source:	ARC 🗸	*Energy/Unit length:	600.000
		*Efficiency:	1.000
*Velocity:	16.667	Power Ratio:	1.200
*Start Time:	50.000	Length Ratio:	0.500
End Time:	72.826	Start/End Energy Ram	P
*Estimated		Length of Ramp:	12.500
Length:	12.000	Energy Factor:	1.500
Width	10.000	*Termination of Weld -	
WIGCH.	101000	Length of Ramp:	12.500
Penetration:	6.000	Energy Factor:	0.750

Joint	Source	Start Time	End Time	Velocity	EPUL	Efficiency
J01_PATH	1	0.000	21.826	16.667	600.000	1.000
J02_PATH	1	25.000	47.620	16.667	600.000	1.000
J03_PATH	1	50.000	72.826	16.667	600.000	1.000

– Перейдите на 5 шаг



# Cooling Condition (Условия охлаждения)

- Щелкните на значок □ на кнопке ^{Scollector} □, выберите SOLID_AIR_HEAT_EXCHANGE и нажмите OK.
- Выберите в строке *Medium опцию Free Air Cooling (охлаждение на воздухе) и введите в строке Ambient Temp (температура окр. среды) значение 20.
- Щелкните на кнопку Add для изменения условий теплообмена.

Coolir	ng Condition		😮 🗙
	Definition Collector *Medium: *Ambient Temp.:	Free Air Cooling	<b>~</b>
<b>5</b>	Collector 🛆	Temperature	Add
- 7 8	SOLID_AIR_HE	20.000	SOLID_AIR_HE
			Enlarge

– Перейдите на 6 этап 🦳.

#### Clamping Conditions (Условия закрепления)

- Щелкните на значок 🔲 на кнопке 🗟 *Collector 🗐, выберите TP_CLAMP и нажмите OK.
- Выберите опцию **Rigid** (жесткие условия закрепления) в поле **Type** (тип закрепления).
- Поставьте галочку напротив опции All в разделе Rigid in direction (закреплении в направлении) и щелкните Add.

Clam	ping Condition			2
1	Clamp Definition			
2	Type C Elastic		iigid Inclamped	
4	Rigid in Direction: -	✓ Z	💌 All	
<b>5</b>				Add

- Щелкните на значок ☐ на кнопке ^k^{*}Collector ☐ и выберите BP_CLAMP.
- Выберите опцию **Rigid** и отметьте **All**. Щелкните кнопку **Add**.
- Щелкните еще раз на значок □ на кнопке ^{Collector} □ и выберите FREE_CLAMP.
- Выберите опцию Unclamped (свободные) и нажмите Add.

Name	Group	Туре
Clamp(1)_TP_CLAMP	TP_CLAMP	Rigid
Clamp(2)_BP_CLAMP	BP_CLAMP	Rigid
Clamp(3)_FREE_CLAMP	FREE_CLAMP	Unclamped

- После определения параметров для всех закреплений, щелкните на значок на кнопке кнопке кнопке кнопке нажмите OK.
  - Введите *Start time (время запуска): 0.0 и *End time (время завершения): 600.0.
- Щелкните Add для сохранения заданных условий закрепления Clamping Conditions.

- Щелкните на значок ☐ на кнопке ^{*Clamp}, выделите FREE_CLAMP и нажмите OK.
  - Введите *Start time (время запуска): 600.0 и *End time (время завершения): 3600.0.
- Щелкните Add для сохранения заданных условий закрепления.

Name	Clamps	Start Time	End Time
CLAMP_COND_01	Clamp(1)_TP_CLAMP;C	0.000	600.000
CLAMP_COND_02	Clamp(3)_FREE_CLAMP	600.000	3600.000

– Перейдите на шаг 7

#### Loads and Deformations (Нагрузки и деформации)

- В данной задаче не учитываются условия нагружения.
- Перейдите на шаг 8

#### Solution Parameter (Параметры решения)

 По умолчанию в разделе Analysis (Анализ) выбраны оба параметра (решение тепловой с металлургической и механической задач.). Если расчет механической задачи не нужен, можно отключить эту опцию. В данном примере будут рассчитываться обе задачи.

Solu	tion Parameter 🔹 😮 🗙
1	*Analysis
2	Process Start Time: 0.000 *End Time: 3600.000
4	*Initial Temperature: 20.000
6	Advanced <b>¥</b>
6	Generate Input Data

#### – Щелкните Generate Input Data.

Это может занять некоторое время, проверяйте появляющиеся сообщения в окне.

	Project conversion into input decks is successful.	
	.pr) tile(s) is/are successfully written.	
le	File D/user/Mister/Three-Weld Pipe/3PASS PIPE CHN.LOG loaded, .prj files error can be checked	
ŝ	File DAuserkristen/Titee-Weid Pipe(3PASS PIPE 1 CHLLOG Idaded, Ip) files eror can be checked	
ပီ	File DAuserkristen Three-Weid Pipe(3PASS PIPE 2 CHKLOG Idaded, pri files error can be checked	
	<ul> <li>File <u>D./user/Kristen/Trifee-weid Pipe/3PASS_PIPE-3_CHK.LOG</u> loaded, .pr) lies en of can be checked</li> </ul>	Y

После нажатия кнопки Generate Input Data будет создан файл *.vdb. Этот файл содержит всю информацию, относящуюся к проекту и должен использоваться для любых изменений относительно проекта.

Он также используется как файл-источник для Computation Manager (менеджер вычислений) для проведения расчета.

## Job Submission (Запуск расчета)

- Перейдите в главное меню и выберите Welding > Computation Manager.
- Выберите файл проекта. В данном примере 3PASS_PIPE.vdb.
- Отметьте все пункты в столбцах Heat Transfer и Mechanical и нажмите Compute (Рассчитать).

**Примечание**: В зависимости от возможностей системы расчет может занять некоторое время.

После завершения расчета ячейки становятся зелеными. Голубой цвет ячеек означает начало расчета. При появлении каких-либо ошибок ячейка становится оранжевого

– При необходимости завершить процесс расчета нажмите Kill Process.

D:\user\Kristen\Th	ree-Weld_Pipe						
Step Name	Active Weld	Initial Time	Final Time	Heat Transfer	Mechanical		^
3PASS_PIPE	J01_PATH (0.0)	0.000	25.000				
3PASS_PIPE-1	J02_PATH (25.0)	25.000	50.000	V	 <b>V</b>		
3PASS_PIPE-2	J03_PATH (50.0)	50.000	600.000	V	 <b>V</b>		
3PASS_PIPE-3		600.000	3600.000	<b>v</b>	 <b>V</b>		
			1		1	1	

#### Анализ результатов

Для просмотра результатов используется приложение Visual Viewer.

- На главной панели выберите Applications/Viewer.
- Панель **Results** станет доступной для использования.



Для просмотра результатов используйте файлы: имя файла_V_POST1000 (результаты расчета термо-металлургической задачи) и имя файла_V_POST2000 (результаты расчета механической задачи).

- Откройте файл 3PASS PIPE 3 V POST2000 через File/Open.
- Нажмите на кнопку Contours (поля распределения параметров) Results. Появится окно Contour. Отметьте опцию Node (Banded) в разделе Display Турев и Contour On/Off в разделе Contour.
- Выберите Nodes (узлы) в списке Component Types (типы компонент) и ниже в поле щелкните, например, на строчку DISPLACEMENT_NOD Y. С помощью опции Component Types можно выбрать разные параметры для отображения (температуру, фазовый состав, смещение узлов, размер зерна, деформации, напряжения и др.).
- Появится поле смещения узлов объекта по оси Ү.
- Щелкните на кнопку . Всплывет окно Animation Control. Выберите шаг расчета, на котором интересно посмотреть результаты (например, выберите последний шаг).

Также можно включить анимацию процесса, нажав на кнопку *в* разделе **Animation**.

/Tensor			
🔵 Node (Smeared)			
Nodes Of Element (Beta)			
🗹 Auto Display			
🗹 Display Min/Max ID			
Components Entities Advanced Transformation			
Tatagratian			
ayers integration			
× ×			
LPHA_NOD			
CUMUL_PLAST_STRAIN_GAMMA_NOD			
DISPLACEMENTS_NOD X			
DISPLACEMENTS NOD Z			
agnitude			
agnitude			
agnitude OD_1			
agnitude OD_1 OD_2			
agnitude OD_1 OD_2 OD_3			
agnitude OD_1 OD_2 OD_3 OD_4			
agnitude DD_1 DD_2 DD_3 DD_4 DD_5			

Animation					
Slow 😑 🕂 👘 👘					
States					
<u>N</u>					
1:0.000000 2:0.970055 3:21.826015 4:24.989946 5:25.000000 6:26.005352 7:47.620014	States to Animate				
8 : 49.989857 9 : 50.000000	Go to : 13				
10 : 51.014481 11 : 72.826019	Skip: 1				
13:3600.000000	Count: 13				
Amplify					
All: 1.0 X: 1.0	All: 1.0 X: 1.0 Y: 1.0 Z: 1.0				
Static States					
Simultaneous Disp	lay 🗖 Part Color				
Multi States					
	Reset Close				

#### H.T. ADVISOR

DISPLACEMENTS_NOD Y(L1) min=-0.376 at NODE 16737 max=0.377 at NODE 15343





#### Поле смещения узлов