Министерство образования и науки Р
 Φ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ульяновский государственный университет» Инженерно-физический факультет высоких технологий Кафедра радиофизики и электроники

С. Г. Новиков, С. В. Елисеева

Расчетные задания по дисциплине «Проектирование полупроводниковых приборов»

Учебно-методическое пособие

Ульяновск 2014

УДК 621.314:537.3 ББК 32.853.1 H75

Печатается по решению Ученого совета инженерно-физического факультета высоких технологий Ульяновского государственного университета

Рецензенты:

кандидат технических наук, заместитель директора по научной работе ФГБУН Институт радиотехники и электроники им. В. А. Котельникова РАН А. А. Черторийский; кандидат физ.-мат. наук, доцент кафедры физического материаловедения ФГБОУ ВПО «Ульяновский государственный университет» И. О. Явтушенко

Новиков, С. Г.

Н75 Расчетные задания по дисциплине «Проектирование полупроводниковых приборов»: учебно-методическое пособие / С. Г. Новиков, С. В. Елисеева. – Ульяновск : УлГУ, 2014. – 76 с.

В учебно-методическом пособии приведены задания по расчету параметров и характеристик полупроводниковых структур, выполненных на основе *p-n*-переходов, предназначенные для самостоятельного выполнения студентами, изучающими физику, технику и технологии проектирования полупроводниковых приборов. Также в пособии представлены примеры расчетов полупроводниковых диодов, транзисторов и тиристоров.

Учебно-методическое пособие содержит 6 заданий.

Предназначено для студентов, изучающих курсы «Проектирование полупроводниковых приборов» и «Моделирование и автоматизированное проектирование полупроводниковых приборов и интегральных микросхем».

> УДК 621.314:537.3 ББК 32.853.1

©Новиков С. Г., Елисеева С. В., 2014 ©Ульяновский государственный университет, 2014

Оглавление

Предисловие	4
Задание № 1. Расчеты структуры и электрических параметров полупроводниковых сплавных выпрямительных диодов	6
Задание № 2. Расчет диффузионного выпрямительного диода	12
Задание № 3. Расчет СВЧ переключательного диода с <i>p-i-n</i> -структурой	16
Задание № 4. Расчет бездрейфового биполярного транзистора	19
Задание № 5. Расчет дрейфового планарно-эпитаксиального <i>p-n-p</i> -транзистора	31
Задание № 6. Расчет основных параметров тиристора	55
Заключение	61
Литература	62
Приложение А. Справочные графики и таблицы	63

Предисловие

Проектирование полупроводниковых приборов является сложной инженерной задачей, требующей фундаментальных знаний в области теории полупроводников [1–3], полупроводниковых приборов, в математике и вычислительной технике, в полупроводниковой технологии [4] и т. п.

Изучение дисциплины «Проектирование полупроводниковых приборов» кроме теоретической составляющей включает и практические занятия, направленные на приобретение конкретных методических и методологических знаний и навыков, необходимых при выполнении работ, связанных с проектированием полупроводниковых приборов.

Целью данного пособия является демонстрация примеров расчета параметров и характеристик полупроводниковых приборов, а также формулировка вариантных заданий для самостоятельного анализа и расчета.

Задания для семинарских занятий, представленные в данном пособии, связаны с частными случаями проектирования полупроводниковых приборов, включающими две группы расчетов [5].

Во-первых, по заданным электрическим параметрам и некоторым дополнительным условиям, например, диапазону рабочих температур, технологическому методу получения структуры и пр., требуется выбрать полупроводниковый материал, определить электрофизические свойства p- и n-областей, рассчитать геометрические размеры структуры и определить технологические режимы образования p-n-перехода [4].

Во-вторых, на основании заданной структуры прибора (характер распределения концентрации примеси, геометрические размеры *p*- и *n*областей и т. д.) необходимо определить основные технологические режимы реализации такой структуры и электрические параметры *p-n*-перехода (напряжение пробоя, емкость и т. д.).

Также в пособии представлены примеры, в которых подробно рассмотрены методы и алгоритмы расчетов полупроводниковых диодов, транзисторов и тиристоров. Необходимо подчеркнуть, что в процессе расчетов следует широко пользоваться справочными данными — таблицами, графиками, чтобы не вычислять известных величин.

Результатом выполнения заданий, представленных в пособии, является более глубокое понимание физических процессов, протекающих в полупроводниковых приборах, механизмов влияния технологических и конструктивных особенностей на параметры приборов, математических моделей и алгоритмов расчета параметров и характеристик различных приборов.

Кроме того, важным результатом выполнения представленных заданий являются приобретаемые навыки работы со справочным материалом, дополнительной технической литературой и документацией.

Задание № 1

Расчеты структуры и электрических параметров полупроводниковых сплавных выпрямительных диодов

Задано: геометрия кристалла – параллелепипед с квадратным основанием и толщиной базовой области w для каждого варианта, заданной в табл. 1.1; прямое падение напряжения U_{np} ; максимальное обратное напряжение $U_{oбp.max}$; прямой допустимый ток $I_{np.don}$ и диапазон температур окружающей среды. Все параметры для каждого варианта заданы в табл. 1.1.

Определить или выбрать: исходный полупроводниковый материал; концентрацию примесей в p- и n-областях N_a и N_d ; равновесную концентрацию основных p_{p0} , n_{n0} и неосновных n_{p0} , p_{n0} носителей заряда; удельное сопротивление областей ρ_p , ρ_n ; марку полупроводникового материала и другие электрофизические параметры p- и n-областей; геометрические размеры кристалла – площадь основания A; ширину ОПЗ p-n-перехода при $U_{oбp.max}$; прямую и обратную ВАХ; конструкцию корпуса диода.

Рассмотрим пример расчета сплавного выпрямительного диода.

Задано: геометрия кристалла – параллелепипед с квадратным основанием и толщиной базовой области w = 250 мкм; прямое падение напряжения $U_{\rm np} \leq 0, 8$ В; максимальное обратное напряжение $U_{\rm oбр.max} = 100$ В; прямой допустимый ток $I_{\rm np.don} = 5$ А; диапазон температур окружающей среды от -60 до +125 °C.

Определить или выбрать: исходный полупроводниковый материал; концентрацию примесей в p- и n-областях $N_{\rm a}$ и $N_{\rm d}$; равновесную концентрацию основных p_{p0} , n_{n0} и неосновных n_{p0} , p_{n0} носителей заряда; удельное сопротивление областей ρ_p , ρ_n ; марку полупроводникового материала и другие электрофизические параметры p- и n-областей; геометрические размеры кристалла – площадь основания A; ширину ОПЗ p-n-перехода

Таблица 1.1

Парамотр		Номер варианта						
Параметр	1	2	3	4	5	6	7	
Толщина								
базовой обла-	50	100	150	200	250	300	350	
сти w , мкм								
Прямое								
падение	$\leq 0,7$	$\leq 0,8$	≤ 0.8	$\leq 0,9$	$\leq 0,9$	$\leq 0,9$	\leq 1,0	
напряжения								
$U_{\rm np}, {\rm B}$								
Максимальное								
обратное	50	70	100	130	150	150	200	
напряжение								
$U_{\text{обр.}max}, B$								
Прямой								
допустимый	3	4	5	6	7	8	10	
ток І _{пр.доп} , А								
Диапазон	от -60	от -60	от -60	от -60	от -60	от -60	от -60	
температур	до	до	до	до	до	до	до	
окружающей	+125	+100	+100	+125	+125	+125	+125	
среды, °С								

Варианты заданий

при $U = U_{\text{обр.мах}}$; прямую и обратную ВАХ; конструкцию корпуса диода. Порядок расчета

1. Определим вид полупроводникового материала. Для изготовления выпрямительных диодов используют германий и кремний. По заданному диапазону температур выбираем кремний, так как германий не обеспечивает работу при +125 °C.

2. Концентрацию примеси в слаболегированной базовой области диода определяем по напряжению пробоя, которое для обеспечения надежной работы прибора должно в 1,5—2 раза превышать $U_{\text{обр.мах}}$. Выбираем двукратный запас: $U_{\text{проб}} = 2U = U_{\text{обр}} = 200$ В. Так как сплавные *p*-*n*-переходы резкие, то по графику рис. А.1 находим $N = 1, 8 \cdot 10^{15}$ см⁻³.

Сплавные переходы на кремнии обычно получают вплавлением алюминия как акцепторной примеси. Поэтому базовая область и, соответственно, исходная пластина кремния должны иметь электропроводность *n*-типа. Концентрация донорной примеси в ней ($N_{\rm d} = 1, 8 \cdot 10^{15}$ см⁻³) соответствует (согласно графику рис. А.2) [6] $\rho_n = 2,5$ Ом-см.

Таким образом, для изготовления диода надо использовать кремний марки 1А КЭФ 2,5/0,1 с удельным сопротивлением 2,5 Ом·см и диффузионной длиной $L_p = 0,01$ см.

Концентрация примеси в p^+ -области определяется по кривой предельной растворимости алюминия в кремнии (рис. А.З). Для температуры вплавления 700 °C концентрация акцепторов $N_{\rm a} = 9 \cdot 10^{18}$ см⁻³. Согласно рис. А.2 удельное сопротивление p^+ -области $\rho_p = 0,012$ Ом·см.

Зная концентрацию основных носителей при T = 293 K, определяем концентрацию неосновных носителей заряда согласно выражению и рис. А.4:

$$p_{n0} = n_i^2 / n_{n0} = (1, 6 \cdot 10^{10})^2 / 1, 8 \cdot 10^{15} = 1, 4 \cdot 10^5 \text{ cm}^{-3}$$

для *п*-области;

$$n_{p0} = (1, 6 \cdot 10^{10})^2 / 9 \cdot 10^{18} = 28 \text{ cm}^{-3}$$

для *р*-области.

Коэффициент диффузии дырок в кремнии $D_p = 12,5 \text{ см}^2/\text{с}$, электронов $D_n = 33 \text{ см}^2/\text{с}$. Для расчетов принимаем время жизни неосновных носителей $\tau_p = \tau_n$, и из соотношения $L_p = \sqrt{D_p \tau_p}$ находим $\tau_p = L_p^2/D_p = (0,01)^2/12, 5 = 8 \cdot 10^{-6} \text{с} = 8 \text{ мкс.}$

Диффузионная длина электронов

$$L_n = \sqrt{D_n \tau_n} = \sqrt{33, 6 \cdot 8 \cdot 10^{-8}} = 0,016$$
 см.

Подвижность электронов μ_n и дырок μ_p определяем по известной концентрации примесей $N_{\rm d}$ и $N_{\rm a}$ (см. рис. А.5): $\mu_n = 1300 \text{ см}^2/\text{B·c}; \ \mu_p = 40 \text{ см}^2/\text{B·c}.$

3. Площадь кристалла определяем исходя из двух основных величин: допустимой плотности тока $J_{\text{доп}} = 10^2 \text{ A/cm}^2$ и максимальной емкости. Так как емкость не задана, то учитываем только допустимую плотность тока $J_{\text{пр.доп}} = A \cdot J_{\text{доп}}$, отсюда

$$A = J_{\text{пр.доп}} / J_{\text{доп}} = 5 / 10^2 = 5 \cdot 10^{-2} \text{ cm}^2.$$

4. Ширину ОПЗ резкого p^+ -*n*-перехода для $U = U_{\text{обр.}max}$ определяем по

формуле

$$\delta = \sqrt{\frac{2\varepsilon\varepsilon_0 U_{\text{oбp.max}}}{q \cdot N_{\mathcal{A}}}} = \sqrt{\frac{2\cdot 12\cdot 8,86\cdot 10^{-14}\cdot 100}{1,6\cdot 10^{-19}\cdot 1,8\cdot 10^{15}}} = 8,6\cdot 10^{-4} \text{ см.}$$

5. Вольт-амперная характеристика диода имеет вид

$$I = j_s A \left(e^{qU/kT} - 1 \right),$$

где плотность тока насыщения

$$j_s = q \frac{D_p}{L_p} p_{n0} + q \frac{D_n}{L_n} n_{p0}.$$

Так как $p_{n0} \ge n_{p0}$, то электронной составляющей плотности тока насыщения можно пренебречь, и тогда:

$$\begin{split} j_s &= q n_i^2 \frac{D_p}{L_p} \cdot \frac{1}{N}; \\ I_s &= A \cdot j_s = 1, 6 \cdot 10^{-19} \cdot (1, 6 \cdot 10^{10})^2 \frac{12, 5}{0, 01} \cdot \frac{1}{1, 8 \cdot 10^{15}} \cdot 5 \cdot 10^{-2} \approx \\ &\approx 1, 4 \cdot 10^{-12} \text{ A}. \end{split}$$

В реальных кремниевых диодах следует учесть составляющую обратного тока, обусловленную генерацией носителей в ОПЗ:

$$I_{RG}^- = q \frac{n_i \delta}{\tau} \text{ A.}$$

При $U = U_{\text{обр.}max}$ ток генерации

$$\begin{split} I_{RG}^{-} &= 1,6 \cdot 10^{-19} \cdot \frac{1,6 \cdot 10^{10} \cdot 8,6 \cdot 10^{-4}}{8 \cdot 10^{-6}} \cdot 5 \cdot 10^{-2} = \\ &= 1,35 \cdot 10^{-8} \text{ A} = 13,5 \text{ HA.} \end{split}$$

Таким образом, $I_{RG}^- \gg I_s$, и обратный ток зависит от напряжения по тому же закону, что и ширина ОПЗ:

$$I_{\text{обр}} = I_{RG}^{-} \left(U_{\text{обр.max}} \right) \sqrt{U_{\text{обр}}/U_{\text{обр.max}}}.$$

Прямая ветвь ВАХ определяется зависимостью

$$I_{
m np} = j_s A e^{qU/kT} = 1, 4 \cdot 10^{-12} e^{39U}$$
 при $T = 300$ К.

Некоторые значения напряжений и токов прямой и обратной ВАХ ветви ВАХ приведены в табл. 1.2.

Таблица 1.2

U,B	-100	-50	-10	-1	+0,2	+0,4	+0,6	+0,8
I,A	$-1,35 \cdot 10^{-8}$	$-9,6\cdot10^{-9}$	$-4,3\cdot10^{-9}$	$-1,35 \cdot 10^{-9}$	$3,4\cdot10^{-9}$	$8,4.10^{-8}$	$2,06 \cdot 10^{-2}$	50,6

Прямая и обратная ВАХ

Как следует из табл. 1.2, $I_{\text{пр.доп}} = 5$ А достигается при $U_{\text{пр}} < 0, 8$ В, что удовлетворяет поставленному в задании требованию.

6. Конструкцию диода выбираем на основании значения теплового сопротивления

$$R_T = (T_{j max} - T_{\rm okp})/P_{max}.$$

Максимальная температура p-n-перехода кремниевых приборов $T_{j max} = +175$ °C. Максимальная температура окружающей среды задана: $T_{\text{окр}} = +125$ °C. Мощность, выделяемая в p-n-переходе:

$$P_{max} = I_{\text{пр.доп}} U_{\text{пр}} = 5 \cdot 0, 8 = 4 \text{ Br.}$$

Тепловое сопротивление диода $R_{\rm T} = (175 - 125)/4 = 12,5$ K/Bт.

В табл. 1.3 приведены емкость, индуктивность и тепловое сопротивлению ление корпусов полупроводниковых диодов. По тепловому сопротивлению и данным табл. 1.2 выбираем корпус типа 1-4а, применяемый для диодов типов Д214, Д215 с $R_{\rm T} = 6,5$ K/Bт. В таком корпусе температура p-n-перехода не превышает $T_{j~max} = T_{\rm okp} + R_{\rm T}P_{max} = 125 + 6, 5 \cdot 4 = 151$ °C.

Таблица 1.3

Тип корпуса	Конструкция	С, пФ	L, кГц	$R_{\mathrm{T}}, \mathrm{K/B_{\mathrm{T}}}$
1-1a		0,1	1	900
1-16	Стеклянная	$0,\!25$	0,5	500
1-1в		0,24	28	150
1-2a		0,3	0,6	230
1-2б	Металлостеклянная	0,4	1	600
1-2в		$0,\!15$	0,3	850
1-3a		0,3	0,7	65
1-36	Металлическая	0,5	0,5	165
1-Зв		0,5	0,5	38
1-4a		1	0,3	0,5
1-4б	Металлическая с винтом	1	0,3	3
1-4в		0,5	0,3	$3,\!3$

Параметры корпусов полупроводниковых диодов

Задание № 2

Расчет диффузионного выпрямительного диода

Задано: структура получена диффузией фосфора при постоянной поверхностной концентрации N_{d0} ; материал исходной пластины ЗА КДБ 0,4/0,1; площадь *p*-*n*-перехода *A*; толщина базовой области *w*; глубина залегания *p*-*n*-перехода x_j ; прямое падение напряжения U_{np} ; максимальная окружающая температура T_{okp} . Для каждого варианта перечисленные параметры приведены в табл. 2.1.

Определить: основные технологические факторы получения диффузионного *p*-*n*-перехода: коэффициент диффузии *D* и время диффузии *t* фосфора; градиент концентрации примеси в *p*-*n*-переходе *a*; напряжение пробоя $U_{\text{проб}}$; ширину ОПЗ при $U_{\text{обр.max}} = 0, 5U_{\text{проб}}$; барьерную емкость $C_{\text{бар}}$ при $U_{\text{обр.max}}$; обратный ток через диод при $U_{\text{обр.max}}$; прямой допустимый ток $I_{\text{пр.доп}}$; приемлемую конструкцию корпуса.

Рассмотрим пример расчета.

Задано: структура получена диффузией фосфора при постоянной поверхностной концентрации $N_{\rm d0} = 3 \cdot 10^{20}$ см⁻³; материал исходной пластины ЗА КДБ 0,4/0,1; площадь *p*-*n*-перехода $A = 1 \cdot 10^{-2}$ см²; толщина базовой области w = 200 мкм; глубина залегания *p*-*n*-перехода $x_j = 25$ мкм; прямое падение напряжения $U_{\rm np} \leq 0, 8$ В; максимальная окружающая температура $T_{\rm окp} = +125$ °C.

Определить: основные технологические факторы получения диффузионного *p*-*n*-перехода: коэффициент диффузии *D* и время диффузии *t* фосфора; градиент концентрации примеси в *p*-*n*-переходе *a*; напряжение пробоя $U_{\text{проб}}$; ширину ОПЗ при $U_{\text{обр.max}} = 0, 5U_{\text{проб}}$; барьерную емкость $C_{\text{бар}}$ при $U_{\text{обр.max}}$; обратный ток через диод при $U_{\text{обр.max}}$; прямой допустимый ток $I_{\text{пр.доп}}$; приемлемую конструкцию корпуса.

Порядок расчета Для определения основных технологических фак-

Таблица 2.1

Парацият		Номер варианта						
Параметр	1	2	3	4	5	6	7	
Поверхностная концентрация $N_{\rm д0}, {\rm cm}^{-3}$	$4 \cdot 10^{20}$	$5 \cdot 10^{20}$	$2 \cdot 10^{20}$	$9 \cdot 10^{19}$	$1 \cdot 10^{20}$	$8 \cdot 10^{19}$	$7 \cdot 10^{19}$	
Площадь p-n-перехода A, 10^{-2} см ²	1	2	1,5	1	2, 5	2	4	
Толщина базовой области w, мкм	50	100	150	200	250	300	350	
Глубина залегания <i>p-п</i> -перехода <i>x_j</i> , мкм	15	20	25	30	25	20	15	
Прямое падение напряжения U _{пр} , В	$\leq 0,7$	≤ 0.8	≤ 0.8	$\leq 0,9$	$\leq 0,9$	$\leq 0,9$	≤ 1,0	
Температура окружающей среды, °С	+125	+100	+100	+125	+125	+125	+125	

Варианты заданий

торов процесса диффузии необходимо знать закон распределения концентрации примеси. Воспользуемся следующей формулой:

$$N(x) = N_{d0}e^{-(kx+0,3)^2} - N_{d3}$$

где $k = 1/2\sqrt{Dt}$.

На глубине залегания *p-n*-перехода $N_{\rm d}(x_j) = N_{\rm a}$ – концентрации акцепторной примеси в исходной пластине.

По графику рис. А.2 для $\rho_p = 0, 4$ Ом-см определяем $N_{\rm a} = 5 \cdot 10^{16}$ см⁻³. Для $x = x_j$ $N_{\rm d}(x_j) = N_{\rm d0} e^{-(kx_j+0,3)^2} = N_{\rm a}.$

Согласно формуле в случае диффузии донорной примеси

$$k = 1/2\sqrt{Dt} = \frac{1}{x_j} \left(\sqrt{\ln \frac{N_{\rm A0}}{N_{\rm a}}} - 0, 3 \right),$$

T. e.
$$Dt = \frac{x_j^2}{4\left(\sqrt{2, 3\lg\left(N_{\rm A0}/N_{\rm a}\right)} - 0, 3\right)^2} = \frac{\left(25 \cdot 10^{-4}\right)^2}{4\left(\sqrt{2, 3\lg\left(3 \cdot 10^{20}/5 \cdot 10^{16}\right)} - 0, 3\right)^2} = 2, 23 \cdot 10^{-7} \, {\rm cm}^2.$$

1. Зададимся температурой диффузии. Оптимальный температурный диапазон составляет 1150-1250 °C. Выберем T=1250 °C, при этом коэффициент диффузии фосфора в кремнии определяем по графику А.6: $D = 8 \cdot 10^{-12}$ см²/с.

Длительность диффузии находим из соотношения $t = 2,23 \cdot 10^{-7}/D = 2,23 \cdot 10^{-7}/8 \cdot 10^{-12} \approx 2,8 \cdot 10^4$ с ≈ 7 ч 45 мин.

2. Для расчета градиента концентрации примеси в *p*-*n*-переходе используем формулу

$$a = 2k (kx_j + 0, 3) N_{\rm a} =$$

$$= \frac{2}{2\sqrt{2, 23 \cdot 10^{-7}}} \left(\frac{25 \cdot 10^{-4}}{2\sqrt{2, 23 \cdot 10^{-7}}} + 0, 3 \right) \cdot 5 \cdot 10^{16} \approx 3, 0 \cdot 10^{20} \ {\rm cm}^{-4}.$$

3. Напряжение пробоя плавного *p*-*n*-перехода определяется градиентом концентрации примеси. Для кремниевого *p*-*n*-перехода с линейным распределением примеси

$$U_{\text{проб}} = 60 \left(\frac{\Delta E}{1,1}\right)^{1,2} \left(\frac{a}{3,0\cdot 10^{20}}\right)^{-0,4} =$$
$$= 60 \left(\frac{1,1}{1,1}\right)^{1,2} \left(\frac{3,0\cdot 10^{20}}{3,0\cdot 10^{20}}\right)^{-0,4} = 60 \text{ B}.$$

4. Ширину ОПЗ для линейного перехода при U_{обр.max} = 0, 5 · U_{проб} = 30 В находим по формуле

$$\delta = \sqrt[3]{\frac{12\varepsilon\varepsilon_0 U_{\text{obp.max}}}{q \cdot a}} = \sqrt[3]{\frac{12\cdot 12\cdot 8,86\cdot 10^{-14}\cdot 30}{1,6\cdot 10^{-19}\cdot 3,0\cdot 10^{20}}} = 2\cdot 10^{-4} \text{ cm}.$$

5. При $U_{\text{обр}} = 30$ В барьерная емкость

$$C = \frac{\varepsilon_0 \varepsilon A}{\delta} = \frac{12 \cdot 8,86 \cdot 10^{-14} \cdot 1 \cdot 10^{-2}}{2 \cdot 10^{-4}} \approx 5 \cdot 10^{-11} \Phi = 50 \ \mathrm{m}\Phi.$$

Определим обратный ток через диод. Вследствие того что $N_{\rm a} \ll N_{\rm g}$, ток насыщения состоит из электронного тока:

$$I_s = A \cdot j_s = q n_i^2 \frac{D_p}{L_p} \cdot \frac{A}{N_a} =$$

= 1,6 \cdot 10^{-19} \cdot (1,6 \cdot 10^{10})^2 \frac{36}{0,01} \cdot \frac{10^{-2}}{5 \cdot 10^{16}} \approx 3 \cdot 10^{-14} \text{ A}.

6. При $U_{\rm obp} = 30$ В находим ток генерации, предварительно определив

$$au_0 = {L_n}^2 / D_n = (0,01)^2 / 36 = 2,8 \cdot 10^{-6} \text{ c} = 2,8 \text{ MKC}.$$

$$\begin{split} I_{RG}^{-} &= q \frac{n_i \delta}{\tau_0} A = \\ &= 1, 6 \cdot 10^{-19} \cdot \frac{1, 6 \cdot 10^{10} \cdot 2 \cdot 10^{-4} \cdot 1 \cdot 10^{-2}}{2, 8 \cdot 10^{-6}} = 1, 9 \cdot 10^{-9} \text{ A} = 1, 9 \text{ HA.} \end{split}$$

Таким образом, I_{RG}^- преобладает, поэтому обратная ветвь ВАХ зависит от напряжения по тому же закону, что и ширина ОПЗ:

$$I_{\text{obp}} = I_{RG}^{-} \left(U_{\text{obp.max}} \right) \sqrt{U_{\text{obp}}/U_{\text{obp.max}}}.$$

7. Прямой допустимый ток $I_{\text{пр.доп}} = A \cdot j_{\text{доп}} = 10^2 \cdot 0, 01 = 1$ А.

8. Для выбора корпуса необходимо оценить максимальную мощность, выделяющуюся в кристалле полупроводника: $P_{max} = I_{\text{пр.доп}} U_{\text{пр}} = 1 \cdot 0, 8 = 0, 8$ Вт.

Тепловое сопротивление диода $R_T = (T_{j max} - T_{okp})/P_{max} = (175 - 125)/0, 8 = 62, 5 \text{ K/Bt}.$

В этом случае подходит корпус типа 1-Зв (см. табл. 1.3), применяемый для стабилитронов Д818 с $R_T = 38$ К/Вт. Температура *p*-*n*-перехода в таком корпусе не превышает $T_{j\ max} = T_{\text{окр}} + R_T P_{max} = 125 + 38 \cdot 0, 8 = 155$ °C.

Задание № 3

Расчет СВЧ переключательного диода с *p-i-n*-структурой

Задано: полупроводниковый материал – кремний; обратное напряжение $U_{\text{обр}}$; барьерная емкость $C_{\text{бар}}$; сопротивление *i*-области R_i для каждого варианта приведено в табл. 3.1.

Таблица 3.1

Парамотр	Номер варианта						
Параметр	1	2	3	4	5	6	7
Обратное							
напряжение	40	45	50	55	60	65	70
$U_{\text{обр}}, B$							
Барьерная							
емкость	3	4	5	6	7	8	9
$C_{\mathrm{fap}}, \mathrm{ff} \Phi$							
Сопротивление							
і-области	40	50	60	70	80	900	100
R_i , Ом							

Варианты заданий

Определить: марку кремния для *i*-области; толщину *i*-области; площадь *p-i-n*-структуры A; прямой допустимый ток $I_{\text{пр.доп}}$; ток насыщения I_s и ток генерации I_{RG}^- при $U_{\text{обр}}$.

Рассмотрим пример расчета.

Задано: полупроводниковый материал — кремний; обратное напряжение $U_{\text{обр}} = 50$ В; барьерная емкость $C_{\text{бар}} = 1$ пФ; сопротивление *i*-области $R_i = 100$ Ом.

Определить: марку кремния для *i*-области; толщину *i*-области; площадь *p-i-n*-структуры A; прямой допустимый ток $I_{\text{пр.доп}}$; ток насыщения I_s и ток генерации I_{RG}^- при $U_{\text{обр}}$. Порядок расчета 1. Выбираем кремний для *i*-области. Известно, что получить кремний с собственной электропроводностью невозможно из-за технологических трудностей. Поэтому используется высокоомный кремний. Выбор его удельного сопротивления определяется многими противоречивыми факторами. В частности, при уменьшении ρ снижается сопротивление *i*-области, но растет барьерная емкость. Для оптимизации значений $C_{\text{бар}}$ и R_i произведем математические преобразования.

Так как $C_{\text{бар}} = \frac{\varepsilon_0 \varepsilon A}{w}$, а $R_i = \rho w/A$, то $\rho = AR_i/w$; $A/w = C_{\text{бар}}/\varepsilon_0 \varepsilon$ и $\rho = \frac{C_{\text{бар}}R_i}{\varepsilon_0 \varepsilon} = 1 \cdot 10^{-12} \cdot 100/12 \cdot 8,86 \cdot 10^{-14} = 94$ Ом · см. Вследствие более высокой технологичности и во избежание каналообразования выбираем кремний *n*-типа электропроводности. При таком удельном сопротивлении подвижность электронов максимальна: $\mu_n = 1500 \text{ см}^2/\text{B} \cdot \text{c}$. Концентрация донорной примеси

$$N_{\rm d} = \frac{1}{q \cdot \rho_n \cdot \mu_n} = \frac{1}{1, 6 \cdot 10^{-19} \cdot 94 \cdot 1500} = 4, 4 \cdot 10^{13} {\rm cm}^{-3}.$$

Выбираем кремний марки КЭ2Г, для которого диффузионная длина $L_p \approx 0,2$ мм, время жизни носителей $\tau_p = L_p^2/D_p = (0,02)^2/12, 5 = 3,2 \cdot 10^{-5}$ с = 32 мкс.

2. Толщину *i*-области определяем по заданному значению $U_{\text{обр}}$, которое должно иметь примерно двукратный запас относительно напряжения пробоя, т. е. $U_{\text{проб}} = 2U_{\text{обр}} = 100$ В.

В идеальной *p-i-n*-структуре все поле сосредоточено в *i*-области, поэтому напряжение пробоя определяется произведением максимальной напряженности электрического поля при пробое ($E_{max} = 2 \cdot 10^5$ В/см для кремния) на толщину *i*-области. Исходя из этого определяем

$$w = \frac{U_{\text{проб}}}{E_{max}} = \frac{100}{2 \cdot 10^5} = 5 \cdot 10^{-4} \text{ см} = 5 \text{ мкм}.$$

Реальная структура вместо *i*-области содержит *n*-область, поэтому полученное значение w = 5 мкм следует уточнить. Для достижений малых значений последовательного сопротивления диода в обратном включении используют режим прокола базы, при котором ширина ОПЗ равняется ширине *i*-области. Ширина ОПЗ резкого p^+ -*n*-перехода

$$\begin{split} \delta &= \sqrt{\frac{2\varepsilon\varepsilon_0 U_{\text{obp}}}{q \cdot N_{\text{g}}}} = \\ &= \sqrt{\frac{2\cdot 12\cdot 8,86\cdot 10^{-14}\cdot 50}{1,6\cdot 10^{-19}\cdot 4,4\cdot 10^{13}}} = 3,9\cdot 10^{-3} \text{ cm} = 39 \text{ MKM}. \end{split}$$

Таким образом, пр
и $\delta=5$ мкм режим прокола будет выдержан. Принимае
м $w=\delta\approx 5$ мкм.

3. Площадь *p-i-n*-структуры определим исходя из значения барьерной емкости $C_{\text{бар}} = \frac{\varepsilon_0 \varepsilon A}{w}$, откуда

$$A = \frac{wC_{\text{foap}}}{\varepsilon_0\varepsilon} = \frac{1\cdot 10^{-12}\cdot 5\cdot 10^{-4}}{12\cdot 8,86\cdot 10^{-14}} = 4,7\cdot 10^{-4} \text{ cm}^2.$$

4. Прямой допустимый ток

$$I_{\text{пр.доп}} = A \cdot J_{\text{доп}} = 10^2 \cdot 4, 7 \cdot 10^{-4} = 0,047 \text{ A} = 47 \text{ MA}.$$

5. Ток насыщения будет в основном дырочным. Так как $L_p > w$, то в расчетную формулу вместо L_p подставляем w, тогда

$$I_s = A \cdot j_s = q n_i^2 \frac{D_p}{w} \cdot \frac{A}{N_{\mathcal{A}}} =$$

= 1, 6 \cdot 10^{-19} \cdot (1, 6 \cdot 10^{10})^2 \frac{12, 5}{4, 4 \cdot 10^{13}} \cdot \frac{4, 7 \cdot 10^{-2}}{5 \cdot 10^{-4}} = 1, 1 \cdot 10^{-13} \text{A}

Ток генерации в ОПЗ при $U_{\rm obp}=50~{\rm B}$

$$\begin{split} I_{RG}^{-} &= q \frac{n_i w}{\tau_0} \ A = \\ &= 1, 6 \cdot 10^{-19} \cdot \frac{1, 6 \cdot 10^{10} \cdot 5 \cdot 10^{-4} \cdot 4, 7 \cdot 10^{-4}}{3, 2 \cdot 10^{-5}} = 1, 9 \cdot 10^{-11} \text{A} = 19 \text{ nA}. \end{split}$$

Отметим, что при $U_{\text{обр}} = 50$ В ток генерации остается практически неизменным, так как ширина ОПЗ остается равной ширине *i*-области.

Задание № 4

Расчет бездрейфового биполярного транзистора

Задано: 1. Электрофизические параметры слоев полупроводника: концентрация легирующей примеси в эмиттере N_{\Im} , в базе N_{\Box} и в коллекторе $N_{\rm K}$; время жизни неосновных носителей заряда в указанных областях транзистора; скорость поверхностной рекомбинации на свободной поверхности базы транзистора *s*.

2. Геометрические размеры структуры: толщина активной области базы ω_6 , глубина залегания эмиттерного ω_9 и коллекторного $\omega_{\kappa} p$ -*n*-переходов; радиусы эмиттера R_9 , коллектора R_{κ} и внутренний радиус кольцевого базового электрода R_6 .

3. Рабочее напряжение на коллекторе $U_{\rm K} = -5$ В, ток эмиттера $I_{\Im} = 1$ мА.

4. Температура T = 300 K.

Для каждого варианта перечисленные параметры приведены в табл. 4.1.

Определить: 1. Электрофизические параметры слоев транзисторов: подвижность, коэффициент диффузии и диффузионные длины неосновных носителей заряда, подвижность основных носителей заряда и удельное электрическое сопротивление слоев.

2. Параметры эквивалентной схемы транзистора для большого сигнала.

3. Параметры физической Т-образной эквивалентной схемы и *h*-параметры транзистора с общей базой и общим эмиттером.

4. Основные и справочные электрические параметры транзистора.

5. Максимально допустимые параметры транзистора.

Рассмотрим пример расчета германиевого сплавного *p*-*n*-*p*-транзистора. Структура, топология и обозначения геометрических размеров транзистора представлены на рис. А.7а.

19

Варианты заданий

Парамотр	Номер варианта						
Параметр	1	2	3	4	5	6	7
Концентрация легирующей примеси в эмиттере N _Э , 10 ¹⁹ см ⁻³	1,0	1,1	1,2	1,3	1,4	1,5	1,6
Концентрация легирующей примеси в базе N _Б , 10 ¹⁵ см ⁻³	1,2	1,3	1,4	1,5	1,6	1,7	1,8
Концентрация легирующей примеси в коллекторе N _K , 10 ¹⁹ см ⁻³	1,0	1,1	1,2	1,3	1,4	1,5	1,6
Время жизни ННЗ в эмиттере, 10 ⁻⁹ с	16,3	16,4	16,5	16,6	16,7	16,8	16,9
Время жизни ННЗ в базе, 10 ⁻⁶ с	27	28	29	30	31	32	33
Время жизни ННЗ в коллекторе, 10 ⁻⁹ с	16,3	16,4	16,5	16,6	16,7	16,8	16,9
Скорость поверхностной рекомбинации <i>s</i> , см · с ⁻¹	320	330	340	350	360	370	380
Толщина активной области базы $\omega_6, \ 10^{-4}$ см	27	28	29	30	31	32	33
Глубина залегания эмиттерного <i>p-n</i> -перехода $\omega_{ m s},$ 10^{-4} см	47	48	49	50	51	52	53
Глубина залегания коллекторного <i>p-n</i> -перехода $\omega_{\rm \kappa}, \ 10^{-4}$ см	67	68	69	70	71	72	73
Радиус эмиттера $R_{\rm 9}, \ 10^{-4} \ {\rm cm}$	222	223	224	225	226	227	228
Радиус коллектора $R_{\rm \kappa}, \ 10^{-4} \ {\rm cm}$	322	323	324	325	326	327	328
Внутренний радиус кольцевого базового электрода <i>R</i> ₆ , см	0,07	0,08	0,09	0,1	0,11	0,12	0,13

Задано: 1. Электрофизические параметры слоев полупроводника: концентрация легирующей примеси в эмиттере N_{\Im} , в базе N_{Ξ} и в коллекторе N_{K} ; время жизни неосновных носителей заряда в указанных областях тран-

зистора; скорость поверхностной рекомбинации на свободной поверхности базы транзистора *s*.

2. Геометрические размеры структуры: толщина активной области базы ω_6 , глубина залегания эмиттерного ω_9 и коллекторного $\omega_{\kappa} p$ -*n*-переходов; радиусы эмиттера R_9 , коллектора R_{κ} и внутренний радиус кольцевого базового электрода R_6 .

3. Рабочее напряжение на коллекторе $U_{\rm K} = -5$ В, ток эмиттера $I_{\Im} = 1$ мА.

4. Температура T = 300 K.

Электрофизические параметры и геометрические размеры транзистора сведены в табл. 4.2. Здесь приняты обозначения: ННЗ – неосновные носители заряда; ОНЗ – основные носители заряда.

Таблица 4.2

Электрофизические и геометрические параметры структуры транзистора

Параметры структуры	Эмиттер <i>р</i> -типа	База <i>п</i> -типа	Коллектор
			р-типа
Концентрация легирующей	$1,3\cdot 10^{19}$	$1,5\cdot 10^{15}$	$1, 3 \cdot 10^{19}$
примеси, cm^{-3}			
Концентрация ННЗ, см ⁻³	$3,08\cdot 10^7$	$2,63\cdot 10^{11}$	$3,08\cdot 10^7$
Подвижность OH3, $cm^2 \cdot B^{-1} \cdot c^{-1}$	210	3700	210
Подвижность HH3, $cm^2 \cdot B^{-1} \cdot c^{-1}$	370	1800	370
Коэффициент диффузии ННЗ,	9,55	46,4	9,55
$cm^2 \cdot c^{-1}$			
Время жизни ННЗ, с	$16, 6 \cdot 10^{-9}$	$30 \cdot 10^{-6}$	$16, 6 \cdot 10^{-9}$
Длина диффузии ННЗ, см	$3,98\cdot10^{-4}$	$3,73\cdot 10^{-2}$	$3,98 \cdot 10^{-4}$
Скорость поверхностной реком-	-	350	-
бинации, см· с ⁻¹			
Удельное сопротивление слоя,	$2,29\cdot 10^{-3}$	1,13	$2,29 \cdot 10^{-3}$
Ом-см			
Толщина слоя, см	$50\cdot 10^{-4}$	$30 \cdot 10^{-4}$	$70 \cdot 10^{-4}$
Радиус <i>р-п</i> -перехода или элек-	$225\cdot 10^{-4}$	0,1	$325\cdot 10^{-4}$
трода, см			

Определить: 1. Электрофизические параметры слоев транзисторов: подвижность, коэффициент диффузии и диффузионные длины неосновных носителей заряда, подвижность основных носителей заряда и удельное электрическое сопротивление слоев.

2. Параметры эквивалентной схемы транзистора для большого сигнала.

3. Параметры физической Т-образной эквивалентной схемы и *h*-параметры транзистора с общей базой и общим эмиттером.

4. Основные и справочные электрические параметры транзистора.

5. Максимально допустимые параметры транзистора.

Порядок расчета 1. Собственную концентрацию носителей заряда при T = 300 К находим из графика рис. А.4: $n_i = 2 \cdot 10^{13}$ см⁻³. Это значение использовано для нахождения концентраций ННЗ по формуле $n_{p0} = n_i^2/p_{p0}$; $p_{n0} = n_i^2/n_{n0}$.

Подвижность основных и неосновных носителей заряда находим из графика рис. А.5а. Коэффициенты диффузии неосновных носителей связаны с их подвижностью соотношением Эйнштейна $D = \varphi_T \mu$, где $\varphi_T = 0,0258$ В при 300 К. Диффузионная длина рассчитывается по формуле $L_n = \sqrt{D_n \tau_n}$.

Удельное сопротивление $\rho_n = (q\mu_n N)^{-1}$ для электронного полупроводника и $\rho_p = (q\mu_p N)^{-1}$ для дырочного. Результаты расчета сведены в табл. 4.2.

2. Для расчета коэффициента передачи тока идеализированной модели транзистора необходимо определить ширину квазинейтральной базы ω , равную исходной технологической ширине базы за вычетом расширения ОПЗ коллекторного *p*-*n*-перехода в область базы. Расширение ОПЗ эмиттера в область базы мало, и им можно пренебречь. Необходимые для расчета значения контактной разности потенциалов коллектора $\varphi_{\kappa\kappa}$ в соответствии с формулой $\varphi_{\kappa\kappa} = \varphi_T \ln \frac{n_{n0}}{n_i} + \varphi_T \ln \frac{p_{p0}}{n_i} = \varphi_T \ln \frac{n_{n0}p_{p0}}{n_i^2}$ и равновесной ширины ОПЗ коллектора приведены в табл. 4.3. Расчет ширины ОПЗ коллектора при U = -5 В по формуле

$$\delta_{\mathbf{k}} = \delta_n + \delta_p = \sqrt{\frac{2\varepsilon\varepsilon_0(\varphi_{\mathbf{k}\mathbf{k}} - U)}{qN^*}} = \delta_0 \sqrt{1 - \frac{U}{\varphi_{\mathbf{k}\mathbf{k}}}},$$

где δ_0 – полная ширина ОПЗ, рассчитанная без учета влияния приложенного напряжения, дает

$$\delta_{\kappa} = 0,734 \cdot 10^{-4} \cdot \sqrt{1 - (-5)/0,457} = 2,54 \cdot 10^{-4} \text{ cm}.$$

Величина $\omega = 30 \cdot 10^{-4} - 2,54 \cdot 10^{-4} = 27,5 \cdot 10^{-4}$ см. Коэффициент инжекции эмиттера $\gamma_N \approx 1 - \frac{D_{n_3} n_{n_0} \omega}{D_p p_{p_{0_3}} L_{n_3}}$ дает $\gamma_N = 1 - 1$

Таблица 4.3

Электрофизические и геометрические параметры *p-n*-переходов

	Эмиттерный	Коллекторный
Параметр	переход	переход
Контактная разность потенциа-	$0,\!457$	0,457
лов, В		
Ширина ОПЗ при $U = 0$, см	$0,734 \cdot 10^{-4}$	$0,734 \cdot 10^{-4}$
Радиус <i>р-п</i> -перехода, см	$255\cdot 10^{-4}$	$325\cdot 10^{-4}$
Периметр <i>р-п</i> -перехода, см	$0,\!141$	0,204
Площадь боковой части	$0,705\cdot 10^{-3}$	$1,43 \cdot 10^{-3}$
p- n -перехода, см ²		
Площадь плоской части	$1,59 \cdot 10^{-3}$	$3,32 \cdot 10^{-3}$
p- <i>п</i> -перехода, см ²		
Полная площадь <i>p-n</i> -перехода,	$2, 3 \cdot 10^{-3}$	$4,75 \cdot 10^{-3}$
CM^2		
Удельная барьерная емкость	$1,93\cdot 10^{-8}$	$1,93 \cdot 10^{-8}$
при $U = 0, \ \Phi \cdot \mathrm{cm}^{-2}$		
Барьерная емкость при U=0, Φ	$44, 4 \cdot 10^{-12}$	$91, 6 \cdot 10^{-12}$

 $1,65 \cdot 10^{-4} = 0,99984 \approx 1.$

Прежде чем вычислить коэффициент переноса, рассчитываем коэффициент рекомбинационных потерь в базе по формуле

$$K_{\varkappa} = \frac{1}{2} \left(\frac{\omega}{L_p}\right)^2 + \frac{\Pi_{\vartheta}(\omega_{\vartheta} + \omega)^2 \omega}{2A_{\vartheta \cdot \Pi \pi} L_p^2} + s \frac{\Pi_{\vartheta}(\omega_{\vartheta} + \omega)\omega}{2A_{\vartheta \cdot \Pi \pi} D_p}, \qquad (4.1)$$

где $\Pi_{\mathfrak{d}}$ – периметр эмиттера; s – скорость поверхностной рекомбинации; $A_{\mathfrak{d}\cdot\mathfrak{n}\mathfrak{n}}$ – площадь плоской части эмиттера.

Для эмиттера в виде круга $\Pi_9 = 2\pi R_9$, а для полоскового (прямоугольного) эмиттера $\Pi_9 = 2(l_9 + z_9)$. В выражении (4.1) первое слагаемое отражает объемные потери дырок в активной базе, второе – объемные потери дырок в пассивной базе, а третье – потери дырок на поверхностную рекомбинацию. В германиевых транзисторах типичные значения s = 50 - 500 см/с, в кремниевых s = 200 - 2000 см/с и сильно зависят от технологии изготовления транзистора.

$$K_{\varkappa} = 2,72 \cdot 10^{-3} + 5,26 \cdot 10^{-3} + 7,13 \cdot 10^{-3} = 15,1 \cdot 10^{-3}$$

В соответствии с формулой $\varkappa_N \approx 1 - K_{\varkappa}$ коэффициент переноса с уче-

том поверхностной рекомбинации

$$\varkappa_N = 1 - K_{\varkappa} = 1 - 15, 1 \cdot 10^{-3} = 0,985.$$

Коэффициент передачи тока эмиттера при отсутствии лавинного умножения носителей заряда в коллекторе $\alpha_N \approx \varkappa_N = 0,985$.

Коэффициент передачи тока базы $\beta_N = \alpha_N / (1 - \alpha_N) = 65, 2.$

Инверсный коэффициент передачи тока

$$\alpha_I \approx \varkappa_I \approx A_{\Im}/A_{\rm K} = 2, 3 \cdot 10^{-3}/4, 75 \cdot 10^{-3} = 0,484.$$

Рассчитаем дырочные составляющие плотности тока насыщения эквивалентной схемы транзистора для большого сигнала (см. рис. А.8а) по формуле

$$j_{\mathfrak{s}ps} = \frac{qD_p p_{n0}}{L_p \operatorname{th}(\omega/L_p)} = j_{\kappa ps}.$$

При этом учтем, что $\omega/L_p = 27, 5 \cdot 10^{-4}/3, 73 \cdot 10^{-2} = 7, 37 \cdot 10^{-2} << 1$ и th $(\omega/L_p) \approx \omega/L_p$. Поэтому

$$j_{\mathfrak{s}\,ps} = j_{\kappa\,ps} = \frac{qD_p p_{n0}}{\omega} = \frac{1,6 \cdot 10^{-19} \cdot 46,4 \cdot 2,63 \cdot 10^{11}}{27,5 \cdot 10^{-4}} = 7,10 \cdot 10^{-4} \,\mathrm{A} \cdot \mathrm{cm}^{-2}.$$

Рассчитаем электронные составляющие плотности тока насыщения в силу симметрии структуры $(N_{\Im} = N_{\rm K})$:

$$j_{\mathfrak{s}\,ns} = j_{\kappa\,ns} = \frac{qD_{p\mathfrak{s}}p_{p0\mathfrak{s}}}{L_{n\mathfrak{s}}} = \frac{1,6\cdot10^{-19}\cdot9,55\cdot3,08\cdot10^7}{3,98\cdot10^{-4}} = 1,18\cdot10^{-7}\,\mathrm{A\cdot cm^{-2}}.$$

Плотности электронных токов пренебрежимо малы по сравнению с плотностями дырочных, и поэтому собственные токи насыщения эмиттера и коллектора

$$I'_{\Theta O} \approx A_{\mathfrak{s}} j_{\mathfrak{s} \ ps} = 2, 3 \cdot 10^{-3} \cdot 7, 1 \cdot 10^{-4} = 1, 63 \cdot 10^{-6} \text{ A};$$
$$I'_{KO} \approx A_{\kappa} j_{\kappa \ ps} = 4, 75 \cdot 10^{-3} \cdot 7, 1 \cdot 10^{-4} = 3, 37 \cdot 10^{-6} \text{ A}.$$

В соответствии с формулой

$$r_{\rm B} = \rho_{\rm B} \left(\frac{1}{8\pi\omega} + \frac{1}{2\pi\omega'} \ln \frac{R_{\rm K}}{R_{\rm P}} + \frac{1}{2\pi\omega_{\rm Kp}} \ln \frac{R_{\rm f}}{R_{\rm K}} \right)$$

сопротивление базы

$$r_{\rm B} = 16, 3 + 8, 53 + 13, 5 = 38, 3$$
 Om.

Сопротивление растекания тела коллектора

$$r_{\rm kk} = \rho_{\rm k}^r \omega_{\rm k} / A_{\rm k} = 4,82 \cdot 10^{-3} \ {
m Om}.$$

3. Расчет параметров *T*-образной эквивалентной схемы для малого сигнала начинаем с расчета дифференциального сопротивления эмиттера, которое определяется формулой

$$r_{\vartheta} = \frac{dU_{\vartheta}}{dI_{\vartheta}}\Big|_{U_{\mathrm{K}}} = \frac{u_{\vartheta}}{i_{\vartheta}}\Big|_{u_{\mathrm{K}}=0} = \frac{\varphi_{T}}{I_{\vartheta} + I_{\vartheta 0}'}.$$

Предварительно рассчитаем $\varphi_T = kT/q = 1,38 \cdot 10^{-33} \cdot 300/1.6 \cdot 10^{-19} = 0,0258$ В.

В рабочей точке $I_{\Im} = 0,001$ А, и поэтому $r_{\Im} = 0,0258/0,001 = 25,8$ Ом. Рассчитаем дифференциальную проводимость коллектора по формуле

$$g_{\kappa}' = \frac{I_{\Im}\delta_{\kappa}}{2(\varphi_{\kappa} - U_{K})} \Big[\frac{\omega}{L^{2}p} + \frac{\Pi_{\Im}(\omega_{\Im} + \omega)(\omega_{\Im} + 3\omega)}{2A_{\Im\cdot\Pi\pi}L_{p}^{2}} + s\frac{\Pi_{\Im}(\omega_{\Im} + 2\omega)}{2A_{\Im\cdot\Pi\pi}D_{p}}\Big]$$

в рабочей точке $I_{\Im} = 1$ мА, $U_{\rm K} = -5$ В:

$$g'_{\rm K} = 2,33 \cdot 10^{-8} (1,98+3,27+3,51) = 2,04 \cdot 10^{-7} \,\,\mathrm{Om^{-1}}$$

Вторую составляющую проводимости коллектора можно рассчитать по формуле

$$g_{\kappa}^{''} = I_{RGK}^{-} / (2(\varphi_{\kappa\kappa} - U_{\kappa})) = 5,88 \cdot 10^{-9} \text{ Om}^{-1}.$$

Обратный ток генерации при $U_{\rm K} = -5$ В:

$$I_{RGK}^{-} = -A_{\kappa} \frac{q n_i \delta_{\kappa}}{2\tau} (e^{U_{\kappa}/\varphi_T} - 1)$$

$$I_{RGK}^{-} \approx 4,57 \cdot 10^{-3} \frac{1,6 \cdot 10^{-19} \cdot 2 \cdot 10^{13} \cdot 2,54 \cdot 10^{-4}}{2 \cdot 30 \cdot 10^{-6}} = 6,42 \cdot 10^{-8} \text{ A}.$$

Окончательно имеем

$$g_{\rm k} = g_{\rm k} + g_{\rm k}' = 2,10 \cdot 10^{-7} \text{ Om}^{-1}; \quad r_{\rm k} = 1/g_{\rm k} = 4,76 \text{ MOm}$$

Коэффициент обратной связи по напряжению $\mu_{\mathfrak{IK}} = \delta_{\mathsf{K}} \varphi_T / 2(\varphi_{\mathsf{KK}} - U_{\mathsf{K}}) \omega$.

$$\mu_{\scriptscriptstyle \mathsf{SK}} = 2.54 \cdot 10^{-4} \cdot 0,0258 / (2(0,457+5) \cdot 27,5 \cdot 10^{-4}) = 2,18 \cdot 10^{-4}.$$

Сопротивление базы и коэффициент передачи тока эмиттера были рассчитаны ранее.

Расчет *h*-параметров транзистора с общей базой проводим по формулам

$$h_{116} \approx r_{\mathfrak{s}} + r_{\mathfrak{f}}(1-\alpha); \quad h_{216} = \alpha r_{\kappa}/(r_{\mathfrak{f}} + r_{\kappa}) \approx \alpha;$$

 $h_{126} \approx r_{\mathfrak{f}}/r_{\kappa} + \mu_{\mathfrak{s}\kappa}; \quad h_{226} = 1/(r_{\mathfrak{f}} + r_{\kappa}) \approx 1/r_{\kappa},$

используя параметры T-образной эквивалентной схемы транзистора с общей базой:

$$h_{116} = 25, 8 + 38, 3(1 - 0, 985) = 26, 4 \text{ Om}; \quad h_{216} = 0, 985;$$

 $h_{126} = 8,05 \cdot 10^{-6} + 2,18 \cdot 10^{-4} = 26,4 \cdot 10^{-4}; \quad h_{226} = g_{\kappa} \approx 2,1 \cdot 10^{-7} \text{ Om}^{-1}.$

Параметры *T*-образной схемы транзистора с общим эмиттером в соответствии с выражениями $r_{\kappa}^* = 1/g_{\kappa}^* = r_{\kappa}/(\beta+1), C_{\kappa}^* = C_{\kappa}(\beta+1)$ следующие: $\beta = 65, 2; r_{\kappa}^* = 4, 76 \cdot 10^6/66, 2 = 7, 19 \cdot 10^4$ Ом. Расчет *h*-параметров транзистора с общим эмиттером по формулам

$$h_{21\mathfrak{d}} \approx \beta; \quad h_{11\mathfrak{d}} \approx r_6 + (\beta + 1)r_{\mathfrak{d}};$$

 $h_{12\mathfrak{d}} = r_\mathfrak{d}/(r_\kappa^* + r_\mathfrak{d}) - \mu_\mathfrak{d}\kappa \approx r_\mathfrak{d}/r_\kappa^* - \mu_\mathfrak{d}\kappa; \quad h_{22\mathfrak{d}} = (1 - \mu_\mathfrak{d}\kappa)/(r_\kappa^* + r_\mathfrak{d}) \approx 1/r_\kappa^*.$ дает

$$h_{21\mathfrak{d}} = \beta = 65, 2;$$
 $h_{11\mathfrak{d}} = 38, 3 + (65, 2+1)25, 8 = 1, 75 \cdot 10^3 \text{ Om} = 1, 75 \text{ KOM};$
 $h_{12\mathfrak{d}} = 3, 59 \cdot 10^{-4} - 2, 18 \cdot 10^{-4} = 1, 41 \cdot 10^{-4};$ $h_{22\mathfrak{d}} = 1, 39 \cdot 10^{-5} \text{ Om}^{-1}.$

4. Удельная барьерная емкость эмиттера и коллектора при U = 0:

$$C_6 = \varepsilon \varepsilon_0 / \delta_{\kappa 0} = 16 \cdot 8,85 \cdot 10^{-14} / 0,734 \cdot 10^{-4} = 1,93 \cdot 10^{-8} \ \Phi \cdot c M^{-2}.$$

Барьерные емкости эмиттера и коллектора при U = 0:

$$C_{\text{$\stackrel{\circ}{\tiny{5}}$ 6ap}}(0) = A_{\text{$\stackrel{\circ}{\tiny{5}}$}}C_{\text{$\stackrel{\circ}{\tiny{6}}$}} = 44, 4 \cdot 10^{-12} \ \Phi = 44, 4 \ \text{Π} \Phi;$$
$$C_{\text{$\stackrel{\kappa$}{\tiny{6}}$ 6ap}}(0) = A_{\text{κ}}C_{\text{$\stackrel{\circ}{\tiny{6}}$}} = 91, 6 \cdot 10^{-12} \ \Phi = 91, 6 \ \text{Π} \Phi.$$

Для расчета барьерной емкости эмиттера в заданной рабочей точке надо предварительно рассчитать напряжение на эмиттерном переходе. В соответствии с выражением $I_{\Im} = I'_{\Im 0} (e^{U_{\Im}/\varphi_T} - 1)$ имеем

$$U_{\Im} = \varphi_T \ln(I_{\Im} / I'_{\Im O}) = 0,166 \text{ B}$$

При этом напряжении барьерная емкость эмиттера, рассчитанная по формуле

$$C_{\text{foap}}(U) = \frac{C_{\text{foap}}(0)}{\sqrt{1 - U/\varphi_{\text{KK}}}},\tag{4.2}$$

 $C_{3 \text{ foap}} = 55, 5 \text{ n}\Phi.$

Расчет барьерной емкости коллектора по формуле (4.2) при $U_{\rm K} = -5$ В дает $C_{\kappa \, {\rm fap}} = 26, 5 \, {\rm n} \Phi.$

Для расчета диффузионной емкости эмиттера по формуле $C_{\mathfrak{s},\mathfrak{gup}} = \tau_{\varkappa}/r_{\mathfrak{s}} = \tau_{\varkappa}(I_{\mathfrak{S}} + I_{\mathfrak{S}0}')/\varphi_{T}$ предварительно найдем

$$\tau_{\varkappa} = \omega^2 / (2D_p) = (27, 5 \cdot 10^{-4})^2 / (2 \cdot 46, 4) = 8,15 \cdot 10^{-8} \text{ c.}$$

Поэтому $C_{9 \text{ forp}} = 8,15 \cdot 10^{-8} \cdot 10^{-3}/0,0258 = 3,16 \cdot 10^{-9} \Phi.$

Рассчитаем диффузионную емкость коллектора по формуле $C_{\kappa \, \text{диф}} = \tau_p I_{\Im} d\alpha / dU_{\text{K}} = \tau_p g'_{\kappa}$; $C_{\kappa \, \text{диф}} = 30 \cdot 10^{-6} \cdot 2,04 \cdot 10^{-7} = 6,12 \cdot 10^{-12} \, \Phi.$

Рассчитаем по формуле

$$I_{K0} = I'_{K0}(1 - \alpha_N \alpha_I) = A_{\kappa} \frac{p D_p p_{n0}}{L_p} \operatorname{th} \frac{\omega}{L_p} \approx A_{\kappa} \frac{q p_{n0} \omega}{\tau_p}$$

обратный ток коллектора при отключенном эмиттере для идеализирован-

ной модели транзистора:

$$I_{K0} = 3,37 \cdot 10^{-6} (1 - 0,985 \cdot 0.484) = 1,76 \cdot 10^{-6} \text{ A}.$$

Обратный ток коллектора с учетом тока генерации в ОПЗ коллектора при $U_{\rm K}=-5~{\rm B}$

$$I_{\text{KE0}} = I_{\text{K0}} + I_{RGK}^{-} = 1,76 \cdot 10^{-6} + 6,42 \cdot 10^{-8} = 1,83 \cdot 10^{-6} \text{ A}.$$

Обратный ток коллектор – эмиттер при коротком замыкании выводов базы и эмиттера рассчитаем по формуле

$$I_{\text{K}\Im\text{K}} = I'_{\text{K}0} + I^{-}_{RGK} = 3,37 \cdot 10^{-6} + 6,42 \cdot 10^{-8} = 3,43 \cdot 10^{-6} \text{ A}.$$

Обратный ток коллектор – эмиттер при разомкнутой базе идеализированной модели без учета тока генерации в ОПЗ коллектора

$$I_{\rm K0}^* = I_{\rm K0}(\beta_N + 1) = 1,76 \cdot 10^{-6}(65, 2+1) = 1,16 \cdot 10^{-4} \text{ A}.$$

Обратный ток коллектор – эмиттер при разом
кнутой базе и $U_{\rm K}=-5~{\rm B}$

$$I_{\text{K}\ni\text{X}} = I_{\text{K}\text{B}0}(\beta_N + 1) = 1,83 \cdot 10^{-6} \cdot 66, 2 = 1,21 \cdot 10^{-4} \text{ A}.$$

Рассчитаем предельную частоту теоретической модели транзистора по формуле

$$f_{\alpha} = \omega_{\alpha}/(2\pi) = 1/(2\pi\tau_{\varkappa}) = 1,95 \cdot 10^6$$
 Гц = 1,95 МГц.

Рассчитаем постоянные времени, входящие в формулу для граничной частоты:

$$\tau_{c9} = r_{9}C_{9} = 25, 8 \cdot 55, 6 \cdot 10^{-12} = 1,43 \cdot 10^{-9} \text{ c};$$

 $\tau_{\rm ck} = (r_{\rm kk} + (1 - \alpha_0)r_6)C_{\rm k} = (4, 82 \cdot 10^{-3} + (1 - 0, 985) \cdot 38, 3) \cdot 26, 5 \cdot 10^{-12} = 1, 52 \cdot 10^{-11} \,\rm c.$

Таким образом, $\tau_{\rm OE} = 8, 29 \cdot 10^{-8}$ с и граничная частота $f_{\rm rp} = \omega_{\rm rp}/(2\pi) = 1/(2\pi\tau_{\rm OE}) = 1,92$ МГц.

Расчет максимальной частоты генерации по формуле

$$f_{\max} = \sqrt{\frac{\alpha_0 f_{\alpha}}{8\pi r_{\rm B} C_{\rm K}}} = \frac{1}{\omega} \sqrt{\frac{D_p}{4\pi r_{\rm B} C_{\rm K}}}$$

дает $f_{\rm max} = 8,67$ МГц.

Вычисляем постоянную времени коэффициента передачи тока базы:

$$\tau_{\beta} = \tau_{\varkappa}(\beta_0 + 1) = 8,15 \cdot 10^{-8} \cdot 66, 2 = 5,39 \cdot 10^{-6} \text{ c.}$$

Предельная частота коэффициента передачи тока базы

$$f_{\beta} = \omega_{\beta}/(2\pi) = 1/(2\pi\tau_{\beta}) = 2,94 \cdot 10^4$$
 Гц = 29,4 кГц.

5. В соответствии с расчетом по формуле

$$U_{\text{проб}}(B) \approx 60 \left(\frac{\Delta E}{1,1}\right)^{1,5} \left(\frac{N}{10^{16}}\right)^{-0.75},$$

где N – концентрация примеси в базе, см⁻³; ΔE – ширина запрещенной зоны, эВ, или графиком рис. А.1 при $N = 1, 5 \cdot 10^{15}$ см⁻³ напряжение пробоя коллекторного *p*-*n*-перехода $U_{K \text{ проб}} \approx 117$ В.

Для сплавных транзисторов возможно смыкание ОПЗ эмиттера и коллектора при некотором *напряжении смыкания* U_{смк}.

Предполагая, что неравномерность фронта вплавления составляет ± 10 мкм, минимальная ширина базы $\omega_{\min} = 30 - 10 - 10 = 10$ мкм. Напряжение смыкания находим из условия

$$\delta_{\kappa}(U_{\rm CMK}) = \delta_{\kappa 0} \sqrt{1 + U_{\rm CMK}/\varphi_{\rm KK}} = \omega_{\rm min};$$

 $U_{\rm CMK} = \varphi_{\rm KK} [(\omega_{\rm min}/\delta_{\rm K0})^2 + 1] = 0,457 [(10 \cdot 10^{-4}/0,734 \cdot 10^{-4})^2 + 1] = 85,3 \text{ B}.$

Пробивное напряжение коллектора, измеряемое между выводами эмиттера и коллектора при нулевом токе базы, рассчитываем по формуле

$$U_{\mathrm{K}\Im} \operatorname{npob} = U_{\alpha} = U_{\mathrm{K}} \operatorname{npob} \sqrt[n]{1 - \alpha_{N0}}.$$

Выбираем n = 3 и, используя значение $\alpha_{N0} = \alpha_N = 0,985$, полученное ранее, имеем $U_{\text{K}\Im \text{ проб}} = 28,8 \text{ B}.$

Для германиевых транзисторов максимальная температура перехода $T_{j max}$ лежит в диапазоне от 75 до 100 °С. Примем $T_{j max} = 85$ °С. Выбираем для транзистора конструкцию в универсальном корпусе с тепловым сопротивлением $R_{\rm T \ n-c} = 0,33$ К/мВт (как у транзистора МП 20). Тогда при температуре окружающей среды $T_0 = 20$ °С максимальная мощность,

рассеиваемая коллектором,

$$P_{\text{K} \max} = (T_{j \max} - T_0)/R_{\text{T} \text{ n-c}} = (85 - 20)/0, 33 = 197 \text{ MBT}.$$

С ростом температуры окружающей среды максимальная мощность, рассеиваемая коллектором, снижается.

Задавая максимальную мощность 50 мВт, при некоторой максимально допустимой температуре окружающей среды $T_{0\,\,\rm max}$ определяем

 $T_{0 \max} = T_{j \max} - R_{K \max} (T_{0 \max}) R_{\text{T II-C}} \approx 70 \text{°C}.$

Расчет дрейфового планарно-эпитаксиального *p-n-p*-транзистора

Задано: 1. Электрофизические параметры слоев кремния: концентрация легирующих примесей N_{20} , N_{10} , N_0 ; концентрация донорной примеси в n^+ - подложке $N_{\rm n}$; время жизни неосновных носителей заряда в указанных слоях.

2. Геометрические размеры и топология структуры: глубина залегания эмиттерного x_3 и коллекторного x_{κ} *p*-*n*-переходов, толщина исходного эпитаксиального *n*-слоя x_{π} , толщина подложки ω_{π} (см. рис. А.9); длина l_3 и ширина z_3 эмиттерной полоски; длина l_{κ} и ширина z_{κ} коллектора; размеры полосок базовой металлизации l_6 и z_6 . Будем считать, что все зазоры, определяющие базы, от края эмиттера до края коллектора и т.д. (см. рис. А.10) составляют Δ .

3. Рабочее напряжение на коллекторе $U_{\rm K} = -5$ В, ток эмиттера $I_{\Im} = 1$ мА.

4. Температура T = 300 K.

Для каждого варианта перечисленные параметры приведены в табл. 5.1.

Рассмотрим пример расчета кремниевого планарно-эпитаксиального дрейфового n^+ -*p*-n- n^+ -транзистора. Распределение примеси в нем представлено на рис. А.96, а его структура и топология – на рис. А.10. Для создания n^+ -*p*-n- n^+ -структуры в эпитаксиальную пленку n-типа электропроводности, выращенную на сильнолегированной n^+ -подложке, проводят локальную двухстадийную диффузию акцепторной примеси (бора) с низкой поверхностной концентрацией для образования области базы *p*-типа электропроводности. Затем проводят локальную двухстадийную диффузию акцепторной вухстадийную диффузию двухстадийную диффузию акцепторной примеси (фосфора) для формирования области эмиттера

Варианты заданий

Парамотр				Номер	вариант	a	
параметр	1	2	3	4	5	6	7
Концентрация легирующей							
примеси в эмиттере N_{20} ,	1,1	$1,\!2$	$1,\!3$	$1,\!0$	1,4	$1,\!5$	1,6
10^{20} cm^{-3}							
Концентрация легирующей							
примеси в базе N_{10} , 10^{18} см ⁻³	5,1	5,2	5,3	5,0	5,4	$5,\!5$	5,6
Концентрация легирующей							
примеси в коллекторе N_0 ,	1,1	1,2	$1,\!3$	1,0	1,4	$1,\!5$	1,6
10^{16} cm^{-3}							
Концентрация донорной							
примеси в n^+ -подложке $N_{\rm n}$,	1,1	$1,\!2$	$1,\!3$	1,0	1,4	$1,\!5$	1,6
10^{20} cm^{-3}							
Время жизни ННЗ в эмиттере,	8,4	8,5	8,6	8,7	8,8	8,9	9,0
10 ⁻⁹ c							
Время жизни ННЗ в базе,	$15,\!5$	$15,\! 6$	15,7	$15,\!8$	15,9	16,0	16,1
$10^{-9} c$							
Время жизни ННЗ в	8,4	8,5	8,6	8,7	8,8	8,9	9,0
коллекторе, 10 ⁻⁹ с							
Толщина подложки ω_{n} , мкм	170	180	190	200	210	220	230
Толщина исходного							
эпитаксиального n -слоя $x_{\rm m}$,	2,2	2,3	2,4	2,5	2,6	2,7	2,8
10 ⁻⁴ см							
Глубина залегания							
эмиттерного p - n -перехода $x_{\mathfrak{d}}$,	1,5	$1,\!6$	1,7	1,8	$1,\!9$	2,0	2,1
10 ⁻⁴ см							
Глубина залегания							
коллекторного <i>p-n</i> -перехода	2,5	2,6	2,7	2,8	$2,\!9$	3,0	3,1
$x_{\rm k}, 10^{-4} {\rm cm}$							
Длина $l_{\mathfrak{s}}$ и ширина $z_{\mathfrak{s}}$	7;	8;	9;	10;	11;	12;	13;
эмиттерной полоски, 10^{-4} см	47	48	49	50	51	52	53
Длина l_{κ} и ширина z_{κ}	67;	68;	69;	70;	71;	72;	73;
коллектора, 10 ⁻⁴ см	67	68	69	70	71	72	73
Длина l_6 и ширина z_6 базовой	25,0;	24,8;	24,6;	24,4;	24,2;	24,0;	23,8;
металлизации, 10 ⁻⁴ см	62,0	62,8	63,6	64,4	65,2	66,0	66,8
Ширина зазоров Δ , 10^{-4} см	2,5	$2,\!6$	2,7	2,8	2,9	$3,\!0$	3,1

 n^+ -типа электропроводности. Границы эмиттерного и коллекторного p-n-переходов выходят на поверхность пластины под пассивирующей пленкой

диоксида кремния. Профиль диффузионного распределения примеси в активной области структуры задается выражением

$$N(x) = N_2(x) - N_1(x) + N_0;$$

$$N_2(x) = N_{20} \exp(-k_2 x^2);$$

$$N_1(x) = N_{10} \exp(-k_1 x^2);$$
(5.1)

где N_{20} – поверхностная концентрация донорной примеси (фосфора); N_{10} – поверхностная концентрация акцепторной примеси (бора); N_0 – исходная концентрация донорной примеси в высокоомном эпитаксиальном слое коллектора.

Задано: 1. Электрофизические параметры слоев кремния: концентрация легирующих примесей N_{20} , N_{10} , N_0 ; концентрация донорной примеси в n^+ -подложке $N_{\rm n}$; время жизни неосновных носителей заряда в указанных слоях.

2. Геометрические размеры и топология структуры: глубина залегания эмиттерного x_3 и коллекторного $x_{\kappa} p$ -*n*- переходов, толщина исходного эпитаксиального *n*-слоя x_{π} , толщина подложки ω_{π} (см. рис. А.9); длина l_3 и ширина z_3 эмиттерной полоски; длина l_{κ} и ширина z_{κ} коллектора; размеры полосок базовой металлизации l_6 и z_6 . Будем считать, что все зазоры, определяющие базы, от края эмиттера до края коллектора и т.д. (см. рис. А.10) составляют Δ .

3. Рабочее напряжение на коллекторе $U_{\rm K}=-5$ В, ток эмиттера $I_{\Im}=1$ мА.

4. Температура T = 300 K.

Электрофизические параметры и геометрические размеры транзистора сведены в табл. 5.2.

Подвижность основных и неосновных носителей заряда уменьшается с ростом суммарной концентрации ионизированных атомов легирующей примеси $N^+(x)$ и может быть рассчитана по эмпирической формуле, приведенной в приложении, с параметрами табл. А.1. Величина $N^+(x)$ определяется модулем суммы положительных и отрицательных ионизованных атомов легирующей примеси: $N^+(x) = N_2(x) + N_1(x) + N_0$. Приведенные в табл. 5.2 значения времени жизни неосновных носителей заряда в областях структуры рассчитаны из условия, что рекомбинация электронов и дырок происходит на рекомбинационных ловушках, образованных атомами золота, концентрация которых постоянна по всей структуре и составляет $N_t = N_{Au} = 0, 1N_0 = 10^{15}$ см⁻³. При иной концентрации золота время жизни электронов и дырок может быть рассчитано по формулам

$$\tau_n = (N_{Au}\sigma_{n1}v_t)^{-1};$$

 $\tau_p = (N_{Au}\sigma_{p2}v_t)^{-1},$

где $\sigma_{n1} = 6, 3 \cdot 10^{-15} \text{ см}^2$ – сечение захвата электрона и $\sigma_{p2} = 11, 5 \cdot 10^{-15} \text{ см}^2$ – сечение захвата дырки на рекомбинационную ловушку; $v_t \approx 10^7 \text{ см/c}$ – тепловая скорость носителей заряда при 300 К.

Определить:

1. Значения констант κ_1 и κ_2 , связанных с параметрами диффузии примеси. Рассчитать распределения примеси в структуре $N_2(x)$, $N_1(x)$, N(x), $N^+(x)$.

2. Электрофизические параметры слоев полупроводника: зависимость подвижности носителей заряда от координаты; средние значения подвижности и диффузионной длины неосновных носителей заряда в слоях; среднее удельное сопротивление и удельное поверхностное сопротивление каждого слоя.

3. Параметры эквивалентной схемы транзистора для большого сигнала.

4. Параметры физической *T*-образной эквивалентной схемы транзистора и *h*-параметры транзистора с общей базой и общим эмиттером.

5. Максимально допустимые параметры транзистора.

Порядок расчета:

В дополнение к данным табл. 5.2 примем концентрацию доноров в n^+ -подложке $N_{\rm m} = 10^{20}$ см⁻³ и толщину подложки $\omega = 200$ мкм.

1. Неизвестные коэффициенты к₁ и к₂, входящие в выражение (5.1), можно найти из условия, что результирующая концентрация примеси при $x = x_{\mathfrak{p}}$ и $x = x_{\kappa}$ равна нулю, т.е. из решения следующей системы уравнений:

$$N_{20}\exp\left(-\kappa_2 x_{\mathfrak{s}}^2\right) - N_{10}\exp\left(-\kappa_1 x_{\mathfrak{s}}^2\right) + N_0 = 0; \qquad (5.2)$$

$$N_{20} \exp\left(-\kappa_2 x_{\kappa}^2\right) - N_{10} \exp\left(-\kappa_1 x_{\kappa}^2\right) + N_0 = 0.$$
 (5.3)

При заданных значениях N_{20} , N_{10} , N_0 , $x_{\mathfrak{s}}$ и x_{κ} уравнения (5.2) и (5.3) представляют собой систему нелинейных алгебраических уравнений отно-

Таблица 5.2

	~	-							
транзистора									
Электрофизические	е и геометрич	еские парамер	эы структуры						
and the second s									

Параметр	Эмиттер	База <i>р</i> -типа	Коллектор
	n^+ -типа		<i>n</i> -типа
Поверхностная или исход-	$N_{20} = 10^{20}$	$N_{10} = 5 \cdot 10^{18}$	$N_0 = 10^{16}$
ная концентрация приме-			
си, см ⁻³			
Средняя концентрация	$3,48\cdot10^{19}$	$4,79 \cdot 10^{16} (\text{BA})$	10^{16}
примеси в слое (или		$1,77 \cdot 10^{18} (B\Pi)$	
OH3), cm^{-3}			
Средняя концентрация	$5,\!63$	$4,09 \cdot 10^3 (\text{BA})$	$1,96 \cdot 10^{4}$
ННЗ, см ⁻³			
Средняя подвижность	72	234 (BA)	1050
OH3, $\operatorname{cm}^2 \cdot \operatorname{B}^{-1} \cdot \operatorname{c}^{-1}$		49 (БП)	
Средняя подвижность	77,5	639 (BA)	384
HH3, $\operatorname{cm}^2 \cdot \operatorname{B}^{-1} \cdot \operatorname{c}^{-1}$			
Средний коэффициент	$16, 6 \cdot 10^{-9}$	$30 \cdot 10^{-6}$	9,91
диффузии, см $^2 \cdot c^{-1}$			
Время жизни ННЗ, с	$8,7 \cdot 10^{-9}$	$15, 8 \cdot 10^{-9}$	$8,7\cdot 10^{-9}$
Средняя диффузионная	$1,32 \cdot 10^{-4}$	$5,10 \cdot 10^{-4}$	$2,94 \cdot 10^{-4}$
длина, см			
Средняя удельная прово-	401	1,79 (BA)	1,68
димость слоя, $Om^{-1} \cdot cm^{-1}$	9	13,9 (БП)	
Среднее удельное сопро-	$2,49 \cdot 10^{-3}$	0,558(BA)	0,595
тивление слоя, Ом · см		$7,21 \cdot 10^{-2} (B\Pi)$	
Удельное поверхностное	$13,\!8$	$5,58 \cdot 10^3 (\text{BA})$	2380
сопротивление слоя,		257 (БП)	
Om/D			
Толщина слоя, см	$1, 8 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	$2, 5 \cdot 10^{-4}$
Примечание. БА – база акт	ивная, БП – база з	пассивная.	

сительно неизвестных к₁ и к₂. Эта система может быть решена методом последовательных приближений. Найдем первое приближение для коэффициента к₁. Концентрация $N_2(x)$, как следует из рис. А.9б, очень быстро спадает с ростом x, поэтому $N_2(x) << N_0$. Приравняв нулю два последних члена уравнения (5.3), получим

$$\kappa_1^{(0)} = \frac{1}{x_\kappa^2} \ln \frac{N_{10}}{N_0}.$$
(5.4)

Подставив численные значения величин, входящих в правую часть (5.4), получим $\kappa_1^0 = 0,79268 \cdot 10^8$ см⁻². Теперь можно найти приближенное значение коэффициента κ_2 с помощью уравнения (5.2):

$$\kappa_2 = \frac{1}{x_s^2} \ln \frac{N_{20}}{N_{10} \exp\left(-\kappa_1 x_s^2\right) - N_0}.$$
(5.5)

Значение коэффициента κ_1 можно уточнить, выражая κ_1 из уравнения (5.3):

$$\kappa_1 = \frac{1}{x_{\kappa}^2} \ln \frac{N_{10}}{N_{20} \exp\left(-\kappa_2 x_{\kappa}^2\right) + N_0}.$$
(5.6)

Рассчитанное по формуле (5.6) значение κ_1 позволяет уточнить значение κ_2 , найденное по формуле (5.5), и т.д. Итерационный процесс заканчиваем, когда первые 4-5 знаков коэффициентов κ_1 и κ_2 перестанут изменяться. Обычно для этого требуется 5-7 итераций. Окончательно для данного примера имеем $\kappa_1 = 0,790966 \cdot 10^8 \text{ см}^{-2}$; $\kappa_2 = 1,723686 \cdot 10^8 \text{ см}^{-2}$.

Распределение легирующих примесей в структуре $N_2(x)$, $N_1(x)$ и N(x) рассчитываем по формуле (5.1). Результаты вычислений приведены в табл. 5.3.

2. Собственную концентрацию носителей заряда в кремнии при T = 300 К находим из графика рис. А.4 или рассчитываем по формуле

$$n_i^2(T) = BT^3 e^{\Delta E/kT},$$

где $B = 3, 1 \cdot 10^{32} \text{ K}^{-3} \cdot \text{см}^{-6}$; $\Delta E = 0,785$ эВ для германия; $B = 1,5 \cdot 10^{33} \text{ K}^{-3} \cdot \text{см}^{-6}$; $\Delta E = 1,21$ эВ для кремния; T – температура, К; k – постоянная Больцмана.

Получаем $n_i = 1, 4 \cdot 10^{10}$ см⁻³. Подвижность электронов и дырок в функции координаты рассчитывалась по эмпирической формуле, приведенной в приложении A, с параметрами табл. А.1 с использованием суммарной концентрации легирующей примеси $N^+(x)$. Результаты расчета представлены на рис. А.11. Средние значения подвижностей основных и неосновных носителей заряда в слоях активной области структуры определялись как средние арифметические значения от подвижностей на границах каждого слоя и приведены в табл. 5.2. Например, средние значения подвижностей
Таблица 5.3

x,	$N_2(x),$	$N_1(x),$	N(x),	$N^+(x),$	μ_n ,	μ_n ,	
MKM	CM^{-3}	CM^{-3}	CM^{-3}	CM^{-3}	$cm^2/(B \cdot c)$	$ cM^2/(B \cdot c) $	
0	1,00E20	5,00E18	9,50E19	1,05E20	72	49	
0,2	9,33E19	4,84E18	8,85E19	9,82E19	73	50	
0,4	7,59E19	4,41E18	7,15E19	8,03E19	74	50	
0,6	5,38E19	3,76E18	5,00E19	5,75E19	76	51	
0,8	3,32E19	$3,\!01\mathrm{E}18$	3,02E19	$3,\!62\mathrm{E19}$	81	52	
1,0	1,78E19	$2,\!27\mathrm{E}18$	1,56E19	2,01E19	89	54	
1,2	8,36E18	$1,\!60\mathrm{E}18$	6,76E18	9,97E18	105	57	
1,4	3,41E18	1,06E18	2,36E18	4,48E18	134	65	
1,6	1,21E18	$6,\!60\mathrm{E17}$	5,62E17	1,88E18	188	79	
1,7	6,86E17	$5,\!08E17$	1,88E17	1,20E18	229	91	
1,8	3,75E17	3,85 E17	2,20E12	7,71E17	280	106	
1,9	1,98E17	$2,\!88\mathrm{E17}$	-7,92E16	4,96E17	342	125	
2,0	1,01E17	$2,\!11\mathrm{E}17$	-1,00E17	$3,\!23E17$	415	148	
2,1	4,99E16	1,53E17	-9,28E16	$2,\!13E17$	496	175	
2,2	2,38E16	$1,\!09E17$	-7,49E16	$1,\!42\text{E}17$	581	204	
2,3	1,09E16	$7,\!62E16$	-5,52E16	9,71 E16	667	235	
2,4	4,88E15	$5,\!25\mathrm{E}16$	-3,76E16	6,74 E16	750	266	
2,5	2,09E15	3,56E16	-2,36E16	4,77E16	827	295	
2,6	8,70E14	$2,\!38\mathrm{E16}$	-1,29E16	$3,\!47\mathrm{E}16$	895	321	
2,7	3,49E14	1,56E16	-5,31E15	2,59E16	952	344	
2,8	1,35E14	$1,01{\rm E}16$	0	2,03E16	998	362	
2,9	5,06E13	$6,\!46\mathrm{E}15$	3,59E15	$1,\!65E16$	1032	376	
3,0	1,83E13	4,05E15	5,97E15	$1,\!41\mathrm{E}16$	1058	387	
3,2	2,16E12	1,52E15	8,48E15	$1,\!15E16$	1087	400	
3,4	2,22E11	$5,\!34\mathrm{E}14$	9,46E15	1,05E16	1100	404	
3,6	1,99E10	1,77E14	9,82E15	1,02E16	1105	406	
Приме	чание. Симво	олом Е обозн	ачено основа	ание 10 пере,	д показателе	м степени,	
например 1,05E20 означает 1,05 \cdot 10 ²⁰ .							

Распределение примесей и подвижности носителей заряда по структуре

электронов и дырок в активной базе определялись как

$$\bar{\mu}_{n\,6} = \frac{\mu_n(x_{\kappa}) + \mu_n(x_{\vartheta})}{2};$$
$$\bar{\mu}_{p\,6} = \frac{\mu_p(x_{\kappa}) + \mu_p(x_{\vartheta})}{2}.$$

Среднее значение коэффициента диффузии определялось из соотношения Эйнштейна с использованием средней подвижности неосновных носителей заряда в каждом слое. Среднее значение диффузионной длины рассчитывалось по формуле $L_n = \sqrt{D_n \tau_n}$. Средние значения концентрации основных носителей заряда считались равными средним значениям результирующей концентрации примеси в каждом слое. Среднее значение концентрации основных носителей заряда в эмиттере

$$\bar{N}_{\mathfrak{H}} = \frac{1}{x_{\mathfrak{H}}} \int_{0}^{x_{\mathfrak{H}}} N(x) dx.$$
(5.7)

С учетом (5.1) интегрирование последнего выражения позволяет записать

$$\bar{N}_{\mathfrak{H}} = \frac{1}{x_{\mathfrak{H}}} \left[\frac{N_{20}\sqrt{\pi}}{2\sqrt{\kappa_2}} erf(\sqrt{\kappa_2}x_{\mathfrak{H}}) - \frac{N_{10}\sqrt{\pi}}{2\sqrt{\kappa_1}} erf(\sqrt{\kappa_1}x_{\mathfrak{H}}) + N_0x_{\mathfrak{H}} \right].$$
(5.8)

Значения функций ошибок (erf-функции) приведены в табл. 5.4.

Таблица 5.4

	e^{z}	$\operatorname{sh}(z)$	ch(z)	h(z)	$\operatorname{erf} c(z)$
0	1	0	1	0	1
0,2	1,221	0,201	1,020	$0,\!198$	0,777
0,4	$1,\!492$	0,411	1,081	$0,\!380$	0,572
0,6	1,822	$0,\!637$	1,185	$0,\!537$	0,396
0,8	2,226	0,888	1,337	$0,\!664$	0,258
1,0	2,718	1,175	1,545	0,762	0,157
1,2	3,320	1,510	1,811	0,834	$0,897\cdot 10^{-1}$
1,4	4,055	1,904	2,151	$0,\!885$	$0,477\cdot 10^{-1}$
1,6	4,953	$2,\!376$	2,578	0,922	$0,236\cdot 10^{-1}$
1,8	$6,\!050$	2,942	3,108	$0,\!947$	$0,109\cdot 10^{-1}$
2,0	$7,\!389$	$3,\!627$	3,762	0,964	$0,462\cdot 10^{-2}$
2,2	9,025	4,457	4,568	$0,\!976$	$0,186\cdot 10^{-2}$
2,4	11,023	5,466	$5,\!556$	$0,\!984$	$0,689\cdot 10^{-3}$
2,6	13,464	6,695	6,769	$0,\!989$	$0,236 \cdot 10^{-3}$
2,8	16,445	8,192	8,253	$0,\!993$	$0,750\cdot 10^{-4}$
3,0	20,086	10,018	10,068	$0,\!995$	$0,221 \cdot 10^{-4}$

Значения гиперболических функций е^z и erfc(z)

3. Эти значения можно рассчитать с помощью приближенного выражения

$$erf(\sqrt{\kappa}x) \approx 1 - \exp\left[-(\sqrt{\kappa}x + 0, 3)^2\right].$$

Средняя концентрация примеси в активной и пассивной областях базы различаются (см. табл. 5.2). Средняя концентрация примеси в пассивной области базы рассчитывается по формуле

$$\bar{N}_{\rm E\Pi} = \left| \frac{1}{x_{\rm K}} \int_{0}^{x_{\rm K}} [-N_{10} \exp(-\kappa_1 x^2) + N_0] dx \right| = \frac{N_{10} \sqrt{\pi}}{2\sqrt{\kappa_1 x}} erf(\sqrt{\kappa_1} x) - N_0.$$
(5.9)

Средняя концентрация примеси в активной области базы

$$\bar{N}_{\mathrm{BA}} = \frac{1}{\omega_{6}} \int_{x_{\mathfrak{s}}}^{x_{\kappa}} N(x) dx = \frac{G}{\omega_{6}}.$$

В этой формуле величина *G* называется числом Гуммеля и определяется выражением

$$G = \frac{N_{20}\sqrt{\pi}}{2\sqrt{\kappa_2}} [erf(\sqrt{\kappa_2}x_{\kappa}) - erf(\sqrt{\kappa_2}x_{\vartheta})] - \frac{N_{10}\sqrt{\pi}}{2\sqrt{\kappa_1}} [erf(\sqrt{\kappa_1}x_{\kappa}) - erf(\sqrt{\kappa_1}x_{\vartheta})] + N_0\omega_6.$$
(5.10)

В коллекторе полагаем, что среднее значение концентрации примеси равно N_0 . Средняя удельная проводимость и удельное сопротивление каждого слоя рассчитаны по формулам $\bar{\sigma} = q\mu_{OH3}\bar{N}$, $\bar{\rho} = 1/\bar{\sigma}$, где μ_{OH3} – среднее значение подвижности основных носителей заряда в данном слое. Удельное поверхностное сопротивление (сопротивление слоя) рассчитывалось как отношение среднего удельного сопротивления к толщине слоя. Например, в активной базе $\rho_{SEA} = \rho_{EA}/\omega_6 = 0,558/10^{-4} = 5,58 \cdot 10^3 \text{ Om}/\Box =$ $5,58 \text{ кOm}/\Box$, в пассивной базе $\rho_{SE\Pi} = \rho_{E\Pi}/x_{\kappa} = 7,21 \cdot 10^{-2}/2,8 \cdot 10^{-4} =$ $257 \text{ Om}/\Box$. Следует отметить, что расчет удельного сопротивления ρ_{SEA} по независимо усредненным значениям подвижности и концентрации основных носителей заряда дает значение ρ_{SEA} с погрешностью примерно 20% (точное значение $\rho_{SEA} = 7,17 \cdot 10^3 \text{ Om}/\Box$), однако при оценочных расчетах такая ошибка допустима. Результаты расчета средних значений электрофизических параметров транзистора сведены в табл. 5.2. В транзисторе, полученном методом диффузии примеси, расчет ширины ОПЗ эмиттерного и коллекторного *p*-*n*-переходов представляет сложную задачу и в общем случае требует привлечения численных методов. Однако в каждом конкретном случае можно найти удачные аппроксимации, позволяющие оценить ширину ОПЗ коллекторного и эмиттерного *pn*-переходов.

Распределение примеси в активной области структуры, построенное по данным табл. 5.3, представлено на рис. А.12. Для оценки ширины ОПЗ и контактной разности потенциалов реальное распределение примеси вблизи координат x_{3} и x_{k} можно заменить линейным (кривые 1 и 2). Выражение для градиента концентрации примеси получим, дифференцируя (5.1) по x:

$$a(x) = dN/dx = -2\kappa_2 x N_{20} \exp(-\kappa_2 x^2) + 2\kappa_1 x N_{10} \exp(-\kappa_1 x^2) = = -2\kappa_2 x N_2(x) + 2\kappa_1 x N_1(x).$$
(5.11)

Рассчитанные по этой формуле значения градиентов концентрации примеси в эмиттерном $a_3 = |a(x_3)|$ и коллекторном $a_{\kappa} = a(x_{\kappa})$ *p*-*n*-переходах представлены в табл. 5.5. Там же представлены значения контактной разности потенциалов эмиттерного и коллекторного переходов, рассчитанные по формуле $\varphi_{\kappa} \approx \varphi_T [1, 16 \lg (3\varepsilon \varepsilon_0 \varphi_T a^2/(qn_i^3)) + 0, 8]$, и значения равновесной ширины ОПЗ этих переходов, рассчитанные по формуле $\delta = \sqrt[3]{12\varepsilon\varepsilon_0(\varphi_{\kappa} - U)/(qa)}$, в предположении линейной аппроксимации распределения примеси. Учитывая, что на эмиттерный *p*-*n*-переход в активном режиме подано прямое напряжение и ширина ОПЗ этого перехода меньше равновесной, аппроксимация распределения примеси линейной зависимостью дает небольшую погрешность при расчетах. Аппроксимация распределения примеси в коллекторном *p*-*n*-переходе линейной зависимостью (кривая 2), как следует из рис. А.12, является более грубым приближением при расчетах расширения ОПЗ.

Для уточненного расчета ширины ОПЗ коллектора заменим реальное распределение акцепторной примеси $N_1(x)$ некоторым экспоненциальным распределением

$$N_1^*(x) = N_{10}^* \exp\left(-\kappa_1^* x\right).$$
(5.12)

Будем считать, что аппроксимирующая кривая $N_1^*(x)$ совпадает с кривой $N_1(x)$ в точках с координатами x_3 и x_{κ} . Это условие позволяет опреде-

Таблица 5.5

Электрофизические и геометрические парамеры *p-n*-переходов

Параметр	Эмиттерный	Коллекторный
	<i>p-п</i> -переход	р-п-переход
Градиент концентрации примеси,	$1,23 \cdot 10^{22}$	$4,34 \cdot 10^{20}$
$a, \ \mathrm{cm}^{-4}$		
Контактная разность потенциалов	0,829	0,709
ϕ_{κ}, B		
Расширение ОПЗ в область базы при	$0,0875\cdot 10^{-4}$	$0,253 \cdot 10^{-4}$
U = 0, линейная аппроксимация, см		
Ширина ОПЗ при $U = 0$, см	$0,175\cdot 10^{-4}$	$0,507\cdot 10^{-4}$
Глубина <i>р-п</i> -перехода, см	$1,8\cdot 10^{-4}$	$2, 8 \cdot 10^{-4}$
Длина <i>l</i> , см	$10\cdot 10^{-4}$	$70 \cdot 10^{-4}$
Ширина z, см	$50\cdot 10^{-4}$	$70 \cdot 10^{-4}$
Периметр П, см	$1,2\cdot 10^{-2}$	$2, 8 \cdot 10^{-2}$
Площадь плоской части, см 2	$5 \cdot 10^{-6}$	$49 \cdot 10^{-6}$
Площадь боковой части, см 2	$3,39\cdot 10^{-6}$	$12, 3 \cdot 10^{-6}$
Полная площадь А, см ²	$8,39\cdot 10^{-6}$	$61, 3 \cdot 10^{-6}$
Плотность обратного тока насыще-	$0,9 \cdot 10^{-10}$	$1,46 \cdot 10^{-10}$
ния, A/см ²		
Обратный ток насыщения, А	$0,756\cdot 10^{-15}$	$8,95 \cdot 10^{-15}$
Барьерная емкость в режиме	0,990	0,556
$I_{\Im} = 1 \text{ MA}, U_{\mathrm{K}} = -5 \text{ B}, \pi \Phi$		

ЛИТЬ

$$\kappa_{1}^{*} = \frac{1}{(x_{\kappa} - x_{\vartheta})} \ln \frac{N_{1}(x_{\vartheta})}{N_{1}(x_{\kappa})},$$

$$N_{10}^{*} = N_{1}(x_{\vartheta}) \exp(\kappa_{1}^{*}x_{\vartheta}).$$
(5.13)

Расчет с использованием значений $N_1(x_9) = 3,85 \cdot 10^{17} \text{ см}^{-3}$ и $N_1(x_{\kappa}) = 1,01 \cdot 10^{16} \text{ см}^{-3}$ по табл.5.3 позволяет определить $\kappa_1^* = 3,64 \cdot 10^4 \text{ см}^{-1}$; $N_{10}^* = 2,7 \cdot 10^{20} \text{ см}^{-3}$. Таким образом, мы заменили реальное распределение примеси N(x), определенное выражением (5.1), в районе коллекторного перехода приближенным экспоненциальным распределением

$$N^*(x) = -N_{10}^* \exp\left(-\kappa_1^* x\right) + N_0.$$
(5.14)

Это распределение примеси нанесено на рис. А.12 штриховой линией (кривая 3) и достаточно близко к реальному распределению примеси.

Для *p*-*n*-перехода с экспоненциальным распределением примеси, соот-

ветствующим выражению (5.14), теория дает следующее трансцендентное уравнение, связывающее в неявном виде полную ширину ОПЗ *p*-*n*-перехода δ с приложенным напряжением *U*:

$$F(\kappa \ \delta) = \frac{(\kappa \ \delta)^2}{2} \operatorname{cth}\left(\frac{\kappa \ \delta}{2}\right) - \kappa \ \delta = \frac{\varepsilon \varepsilon_0 \kappa^2 (\varphi_\kappa - U)}{q N_0}. \tag{5.15}$$

При малых к $\delta < 2$ функция $F(\kappa \delta) \approx (\kappa \delta)^3/12$. Если обозначить правую часть уравнения (5.15) через $B = \varepsilon \varepsilon_0 \kappa (\varphi_{\kappa} - U)/qN_0$, то можно определить

$$\kappa \delta \approx \sqrt[3]{12 B}.\tag{5.16}$$

Это решение соответствует аппроксимации экспоненциального распределения примеси вблизи точки x_{κ} линейной зависимостью и дает погрешность менее 5% при B < 0, 6. При больших $\kappa \delta > 4 \operatorname{cth}(\kappa \delta/2) \approx 1$, и поэтому

$$F(\kappa \,\delta) \approx (\kappa \,\delta)^2 / 2 - \kappa \,\delta = B. \tag{5.17}$$

Решение полученного квадратного алгебраического уравнения относительно к δ дает

$$\kappa \,\delta \approx 1 + \sqrt{1 + 2B}.\tag{5.18}$$

При B > 100 величина к $\delta \approx \sqrt{2 B}$ с погрешностью не более 7%, что соответствует аппроксимации распределения примеси в *p*-*n*-переходе ступенчатой зависимостью. В диапазоне 0, 6 < B < 100 *p*-*n*-переход является плавным, и наилучшие результаты получаются при расчете значений к δ с помощью модифицированного выражения

$$\kappa \,\delta \approx 1 + \sqrt{2 B}.\tag{5.19}$$

Это выражение при B > 0, 6 дает погрешность не более 5%. График зависимости $F(\kappa \delta)$ в соответствии с выражением (5.15) и аппроксимации этой зависимости приведены на рис. А.13.

Для коллекторного *p-n*-перехода величина к, входящая в уравнение (5.15), равна κ_1^* , а величина δ определяет ширину ОПЗ коллектора δ_{κ} . По заданному значению *U* можно с помощью графика, изображенного на рис.А.13, или по формулам (5.16)-(5.19) определить произведение к δ_{κ} , а затем найти δ_{κ} . Например, для коллекторного *p-n*-перехода при U = 0 правая часть уравнения (5.15) имеет вид

$$B = \frac{\varepsilon\varepsilon_0\kappa(\varphi_\kappa - U)}{qN_0} = \frac{12\cdot 8,85\cdot 10^{-14}(3,64\cdot 10^4)^2}{1,6\cdot 10^{-19}}\frac{0,709}{10^{16}} = 0,624.$$

Из графика рис. А.13 находим соответствующее значение $\kappa_1^* \delta_{\kappa} = 2$ и рассчитываем $\delta_{\kappa} = 2/\kappa_1^* = 2/3, 64 \cdot 10^4 = 0, 549 \cdot 10^{-4}$ см = 0, 549 мкм. Это значение несколько больше значения 0, 507 мкм, полученного при замене распределения примеси линейным. Расширение ОПЗ коллектора в область *p*-базы $\delta_{1\kappa}$ и в область *n*-коллектора $\delta_{2\kappa}$ связано с полной шириной ОПЗ соотношениями

$$\kappa_1^* \delta_{1\kappa} = \ln \frac{\kappa_1^* \delta}{1 - \exp(-\kappa_1^* \delta)};$$

$$\kappa_1^* \delta_{2\kappa} = \ln \frac{\exp(+\kappa_1^* \delta) - 1}{\kappa_1^* \delta}.$$
(5.20)

Значения $\delta_{1\kappa}$ и $\delta_{2\kappa}$ можно рассчитать по приведенным формулам или определить из графика рис. А.13: $\kappa \delta_{1\kappa} = 0,84$; $\kappa \delta_{2\kappa} = 1,16$, откуда $\delta_{1\kappa} = 0,23$ мкм; $\delta_{2\kappa} = 0,32$ мкм. Определенные по данной методике значения δ_{κ} , $\delta_{1\kappa}$ и $\delta_{2\kappa}$ в функции обратного напряжения смещения коллекторного перехода приведены в табл. 5.6. Эмиттерный *p-n*-переход состоит из плос-

Таблица 5.6

$U_{\rm K},{ m B}$	В	к δ_{κ}	$\delta_{\mathbf{k}}, \ \mathbf{MKM}$	$\delta_{1\kappa}$, MKM	$\delta_{2\kappa}$, MKM
0	0,62	2,02	0,549	0,230	0,320
-1	$1,\!50$	$2,\!81$	0,769	$0,\!302$	0,467
-2	2,38	$3,\!25$	$0,\!892$	$0,\!335$	0,558
-4	4,14	$3,\!95$	1,08	$0,\!385$	0,701
-5	5,02	$4,\!25$	$1,\!17$	$0,\!393$	0,755
-6	$5,\!90$	$4,\!50$	$1,\!24$	$0,\!412$	0,810
-8	7,66	$5,\!04$	1,38	$0,\!450$	0,334
-10	9,42	$5,\!46$	$1,\!50$	0,467	1,03
-20	18,2	$7,\!12$	$1,\!95$	$0,\!539$	1,42
-30	27,0	8,42	$2,\!31$	$0,\!585$	1,73
-40	$35,\!8$	$9,\!52$	$2,\!61$	$0,\!619$	1,99
-50	44,6	10,5	$2,\!88$	$0,\!646$	2,24
-60	53,4	11,4	$3,\!13$	$0,\!668$	2,46

К расчету расширения ОПЗ коллектора

кой части, размеры которой совпадают с размерами окна в пленке окисла, созданного методом фотолитографии для диффузии эмиттерной приме-

си, и боковых частей, связанных с боковой диффузией примеси. Будем считать, что боковая поверхность *p-n*-перехода представляет собой часть цилиндрической поверхности с радиусом, равным глубине залегания *p-n*перехода. Геометрические размеры *p-n*-переходов представлены в табл.5.5.

Площадь плоской части эмиттера

$$A_{\text{эпл}} = lz = 10 \cdot 10^{-4} \cdot 50 \cdot 10^{-4} = 5 \cdot 10^{-6} \text{ см}^2.$$

Площадь боковой части эмиттера

$$A_{
m эбок} = \pi x (l+z) = 3,39 \cdot 10^{-6} \text{ см}^2$$

Полная площадь эмиттера

$$A_{\mathfrak{H}} = A_{\mathfrak{HII}} + A_{\mathfrak{HOK}} = 8,39 \cdot 10^{-6} \text{ cm}^2.$$

Аналогично рассчитывается площадь коллекторного *p-n*-перехода. Результаты расчета сведены в табл. 5.5.

3. Для проведения расчетов коэффициентов передачи тока необходимо определить ширину квазиэлектронейтральной базы с учетом расширения ОПЗ *p*-*n*-переходов. Расширение ОПЗ коллектора в базу при $U_{\rm K} = -5$ В (рабочий режим) приведено в табл. 5.6 и составляет $\delta_{1\kappa} = 0,393$ мкм. Расчет расширения ОПЗ эмиттера в базу δ_{29} осложнен тем обстоятельством, что прямое напряжение на эмиттере неизвестно. В рабочем режиме в цепи эмиттера задан прямой ток $I_{\rm P} = 1$ мА. Напряжение на эмиттере можно вычислить по формуле

$$U_{\Im} = \varphi_T \ln(1 + j/j_{\vartheta 0}). \tag{5.21}$$

Номинальная плотность тока эмиттера $j_{\mathfrak{s}} \approx I/A = 10^{-3}/8, 39 \cdot 10^{-6} = 120 \text{ A/cm}^2$. Величина $j'_{\mathfrak{s}0}$ пока неизвестна, но ее можно оценить, учитывая, что обратный ток эмиттера определяется в основном электронной составляющей, которую можно рассчитать с учетом данных табл. 5.2:

$$j_{\Im ns} = \frac{q\bar{D}_n\bar{n}_{p06}}{\bar{\omega}_6} = \frac{1,6\cdot10^{-19}\cdot13,4\cdot4,09\cdot10^3}{0,607\cdot10^{-4}} = 1,44\cdot10^{-10} \frac{A}{cM^2}.$$

В отличие от данного в табл. 5.2, значение коэффициента диффузии

усреднено в диапазоне x от 1,8 до 2,407 мкм. Окончательно по формуле (5.21) находим $U_{\Im} = 0,710$ В, полагая $j'_{\Im o} \approx j_{\Im ns}$.

Расширение ОПЗ эмиттера в область базы

$$\delta_{2\mathfrak{H}} = \delta_{2\mathfrak{H}} (1 - U_{\mathfrak{H}} / \varphi_{\mathrm{K}\mathfrak{H}})^{1/3} = 4, 5 \cdot 10^{-6} \text{ cm} = 4, 5 \cdot 10^{-2} \text{ MKM}.$$

Методика расчета коэффициента переноса состоит из двух этапов. На первом этапе с помощью численного интегрирования в соответствии с выражением

$$\Delta n(x) = n(x) - n_{p0}(x) = \frac{j_{\kappa n}}{qN(x)} \int_{\omega}^{x} \frac{N(x)}{D_n} dx = \frac{I_{\kappa n}}{A_{\vartheta}qN(x)} \int_{x}^{\omega} \frac{N(x)}{D_n} dx$$

находим распределение концентрации неосновных носителей заряда в квазинейтральной базе в пределах от $x_{2\mathfrak{d}} = 1,845$ мкм до $x_{1\kappa} = 2,407$ мкм. Вычисление интеграла показано в табл. 5.7. Разделим интервал интегрирования на 10 частей. Интегрирование удобно вести по методу трапеций, вычисляя значение интеграла по формуле

Таблица 5.7

Номер	x, MKM	$N(x), { m cm}^{-3}$	$N^+(x),$	$D_n(x),$	$N(x)/D_n(x),$	$\Delta n(x),$
шага			CM^{-3}	cm^2/c	$\mathrm{cm}^{-5}\cdot\mathrm{c}$	CM^{-3}
0	$2,\!4070$	-3,654E16	6,574E16	19,5	1,873E15	0
1	$2,\!3508$	-4,589E16	8,048 E16	18,3	2,505E15	$1,\!675\mathrm{E}15$
2	$2,\!2946$	-5,551E16	9,772 E16	17,2	3,231E15	$3,\!199\mathrm{E}15$
3	2,2384	-6,727E16	1,227 E17	15,8	4,244 E15	4,592 E15
4	$2,\!1822$	-7,841E16	1,528 E17	14,6	$5,\!370\mathrm{E}15$	6,093 E15
5	$2,\!1260$	-8,872E16	1,914 E17	13,4	$6,\!642\mathrm{E}15$	7,762 E15
6	2,0698	-9,670E16	2,408 E17	12,1	7,959E15	9,774 E15
7	$2,\!0136$	-10,016E16	3,045 E17	11,0	$9,\!117E15$	1,243E16
8	$1,\!9574$	-9,598E16	3,869E17	9,88	9,712E15	$1,\!641\mathrm{E}16$
9	$1,\!9012$	-7,975E16	4,935E17	8,85	9,008E15	2,338E16
10	$1,\!845$	-4,556E16	$6,\!315\mathrm{E}17$	7,91	5,760 E15	4,749E16

К расчету интеграла (5.22)

$$J = H(y_0/2 + y_1 + y_2 + \dots + y_{n-1} + y_n/2), \qquad (5.22)$$

где H – шаг интегрирования, в данном случае равный 0,0562 мкм; y_0 и y_n

– начальное и конечное значения функции.

Интегрирование можно вести по методу трапеций, но большую точность дает метод парабол (метод Симпсона), в соответствии с которым

$$J = \frac{H}{3}(y_0 + 4y_1 + 2y_2 + \dots + 4y_{n-2} + 2y_{n-1} + y_n).$$
 (5.23)

На этой стадии можно уточнить значение тока $j_{\ni ns}$. По аналогии с формулой

$$I_{\Im n} = \frac{A_{\Im}qn_i^2}{\varkappa_N \int\limits_0^{\omega} \frac{N(x)}{D_n} dx} = (e^{U_{\Im/\varphi_T}} - 1) = I_{\Im ns}(e^{U_{\Im/\varphi_T}} - 1)$$

можем записать

$$j_{
m ens} = q n_i^2 / [\varkappa_N \int N(x) / D_n(x) dx].$$

По методу парабол вычислим $\int [N(x)/D(x)]dx = 3,489 \cdot 10^{11} \text{ см}^{-5} \cdot \text{с.}$ Окончательно $j_{\Im ns} = 0,899 \cdot 10^{10} \text{ A/cm}^2$. В данном случае метод трапеций дает ошибку менее 3%. При расчете $\Delta n(x)$ задавалось значение $j_{n\kappa} = 10^3 \text{ A/cm}^2$.

На втором этапе по вычисленной зависимости $\Delta n(x)$ находим значение тока объемной рекомбинации электронов в базе на основании формул

$$I_V = A_{\mathfrak{s}} \int_{0}^{\omega} \frac{q\Delta n(x)}{\tau_{n6}} dx = \frac{Q_n}{\tau_{n6}}.$$
 (5.24)

Вычисление по методу трапеций дает $\int \Delta n(x) dx = 5,967 \cdot 10^{11} \text{ см}^{-2}$, а по методу парабол – $5,99 \cdot 10^{11} \text{ см}^{-2}$. В соответствии с формулой (5.24)

$$j_V = \frac{q}{\tau_{n6}} \int \Delta n(x) dx = \frac{1, 6 \cdot 10^{-19} \cdot 5, 99 \cdot 10^{11}}{15, 8 \cdot 10^{-9}} = 6,07 \frac{A}{cM^2}.$$

В соответствии с формулой

$$\varkappa_N = \frac{I_{\mathrm{K}n}}{I_{\Im n}} = \frac{I_{\mathrm{K}n}}{I_{\mathrm{K}n} + I_V} = \frac{1}{1 + I_V/I_{\mathrm{K}n}}$$

найдем коэффициент переноса для нормального режима

$$\varkappa_N = (1+6,07\cdot 10^{-3})^{-1} \approx 1-6,07\cdot 10^{-3} = 0,99393.$$

Если бы коэффициент инжекции был равен единице, то коэффициент передачи тока базы был бы равен $\beta_{\varkappa} = \varkappa_N/(1 - \varkappa_N) = 165.$

Вычисление коэффициента инжекции γ_N представляет сложную задачу, решение которой в общем случае требует применения численных методов. В данном расчете рассмотрим оценочный метод, позволяющий оценить γ_N . Начнем с оценочного расчета тока дырок j_{3p} , инжектированных в квазиэлектронейтральную область n^+ -эмиттера. Дырки, инжектированные в эмиттер, попадают в сильное тормозящее электрическое поле, обусловленное неравномерным распределением доноров в эмиттере. Напряженность этого поля на левой границе ОПЗ эмиттера при $x = x_{13} = 1, 8 - 0, 045 =$ 1,755 мкм определяется выражением

$$\varepsilon(x_{1\mathfrak{d}}) = -\frac{\varphi_T}{N(x_{1\mathfrak{d}})} \frac{dN}{dx}_{x_{1\mathfrak{d}}}$$

Значение $N(x_{1\flat}) = 7,63 \cdot 10^{16} \text{ см}^{-3}$ вычисляем по формуле (5.1). Значение $a_{\flat} = a(x_{1\flat}) = dN/dx$ при $x = x_{1\flat}$ вычисляем по формуле (5.11): $a = -1,85 \cdot 10^{22} \text{ см}^{-4}$. Поэтому $\mathcal{E}(x_{1\flat}) = 6,25 \cdot 10^3 \text{ B/см}$.

Таким образом, дырки в эмиттере диффундируют против электрического поля. Как известно из физики полупроводников, в этом случае для описания распределения дырок от координаты следует пользоваться не диффузионной длиной, а *длиной затягивания*, или *диффузионной длиной против поля*

$$L^* = L_{p_{\vartheta}} / (\eta_{\vartheta} + \sqrt{\eta_{\vartheta}^2 + 1}).$$
 (5.25)

В этой формуле величина $\eta_{\mathfrak{p}} = \mathcal{E}(x_{1\mathfrak{p}})L_{p\mathfrak{p}}/(2\varphi_T)$ называется фактором поля. Полагая, что $\mu_{p\mathfrak{p}} = 100 \text{ см}^2\text{B}^{-1}\text{c}^{-1}$ (см. рис. А.11), $D_{n\mathfrak{p}}(x_{1\mathfrak{p}}) = 2,6 \text{ см}^2\text{c}^{-1}$; $L_{p\mathfrak{p}} = 1,5$ мкм, вычисляем $\eta_{\mathfrak{p}} = 18,2$; $L^* = 4,13 \cdot 10^{-6}$ см $= 4,13 \cdot 10^{-2}$ мкм.

Дырочный ток эмиттера на границе ОПЗ

$$j_{9p} = \frac{qL^* p_{n09}(x_{19})}{\tau_{p9}} [\exp(U_{9}/\varphi_T) - 1].$$
 (5.26)

Предэкспоненциальный множитель определяет плотность дырочного тока насыщения эмиттера. Учитывая, что $p_{n09}(x_{19}) = n_i^2/N(x_{19}) =$

 $2,57 \cdot 10^3 \, {\rm cm}^{-3}$, можно рассчитать

$$j_{\mathfrak{p}ps} = \frac{qL_E p_{n0\mathfrak{p}}(x_{1\mathfrak{p}})}{\tau_{p\mathfrak{p}}} = \frac{1, 6 \cdot 10^{-19} \cdot 4, 13 \cdot 10^{-6} \cdot 2, 57 \cdot 10^3}{8, 7 \cdot 10^{-9}} = 1,95 \cdot 10^{-13} \frac{A}{cM^2}$$

При оценке значения тока j_{ps} считалось, что диффузия дырок против поля происходит в постоянном электрическом поле напряженностью, равной $\mathcal{E}(x_{1p})$. Реально напряженность тормозящего электрического поля спадает практически линейно к поверхности кристалла. Поэтому в среднем влияние поля $\mathcal{E}(x_{1p})$ слабее и значения токов j_{pp} и j_{ps} несколько больше. Тем не менее, сохраняя полученные оценочные значения, найдем коэффициент инжекции по формуле

$$\gamma_N = \frac{j_{\ni n}}{j_{\ni}} = \frac{j_{\ni n}}{j_{\ni n} + j_{\ni p}} = \frac{1}{1 + j_{\ni p}/j_{\ni n}} = \frac{1}{1 + j_{\ni ps}/j_{\ni ns}}.$$
 (5.27)

Используя полученное ранее значение $j_{9ns} = 0,899 \cdot 10^{-10} \text{ A/cm}^2$, получаем $j_{9ps}/j_{9ns} = 2,17 \cdot 10^{-3}$, и величина $\gamma_N \approx (1+2,17 \cdot 10^{-3})^{-1} = 0,99784$. Если бы коэффициент \varkappa_N был равен единице, то коэффициент передачи тока базы был бы равен $\beta_{\gamma} = \gamma_N/(1-\gamma_N) = 461$. С учетом ранее вычисленного значения \varkappa_N величина $\alpha_N = \gamma_N \varkappa_N = 0,99175$, а $\beta_N = \alpha_N/(1-\alpha_N) = 121$.

Таким образом, в данном случае коэффициент передачи тока базы β_N в большей степени определяется значением коэффициента переноса. При большем, чем в данном примере, времени жизни электронов в базе коэффициент β_N в большей степени будет определяться коэффициентом инжекции γ_N .

Составляющие плотности тока насыщения эмиттерного *p*-*n*-перехода рассчитаны ранее. Полная плотность тока насыщения эмиттера

$$j_{\mathfrak{s}0}' = j_{\mathfrak{s}ns} + j_{\mathfrak{s}ps} = 0,899 \cdot 10^{-10} + 1,95 \cdot 10^{-10} = 0,900 \cdot 10^{-10} \text{ A/cm}^2.$$

С учетом полной площади эмиттера (см. табл. 5.5) найдем ток насыщения эмиттера

$$I_{\Im O}^{'} = A_{\Im} j_{\Im O}^{'} = 8,39 \cdot 10^{-6} \cdot 0,900 \cdot 10^{-10} = 0,756 \cdot 10^{-15} \text{ A/cm}^2.$$

Как и в транзисторе с однородной базой, составляющая тока насыщения коллектора, обусловленная термогенерацией неосновных носителей заряда

(электронов) в базе, $j_{ns}=j_{ns}=0,899\cdot 10^{-10}~{
m A/cm}^2.$

Дырочная составляющая тока насыщения, обусловленная термогенерацией дырок в квазиэлектронейтральном коллекторе, определяется формулой

$$I_{\kappa ps} = A_{\kappa} \frac{q D_{n\kappa} n_{p0\kappa}}{L_{n\kappa}} \operatorname{th} \frac{\omega_{\kappa}}{L_{n\kappa}},$$

если в ней заменить индекс n на p и наоборот. Тогда плотность тока $j_{\kappa ps}$ можно рассчитать по формуле

$$j_{\kappa ps} = \frac{q D_{p\kappa} p_{n0\kappa}}{L_{p\kappa}} \operatorname{th} \frac{\omega_{\kappa}}{L_{p\kappa}}.$$
(5.28)

Полагая, что начальная ширина *n*-области коллектора $\omega_{\rm kt} = 2,5$ мкм (табл. 5.2) и в рабочем режиме при $U_{\rm K} = -5$ В $\delta_{2\kappa} = 0,755$ мкм (табл. 5.6), получаем ширину квазиэлектронейтральной области коллектора: $\omega_{\rm k} = \omega_{\rm ktr} - \delta_{2\kappa} = 2,5-0,755 = 1,745$ мкм. В соответствии с данными табл. 5.2 $\omega_{\rm k}/L_{p\kappa} = 1,745\cdot10^{-4}/2,94\cdot10^{-4} = 0,594$. При данном значении аргумента в соответствии с табл. А.1 приложения А имеем th $0,594 \approx 0,531$.

На основании этих данных получаем

$$j_{\kappa ps} = \frac{1, 6 \cdot 10^{-19} \cdot 9, 91 \cdot 1, 96 \cdot 10^4}{2, 94 \cdot 10^{-4}} \cdot 0, 531 = 0, 561 \cdot 10^{-10} \text{ A/cm}^2.$$

Плотность тока насыщения коллектора

$$j_{\kappa 0}^{'} = j_{\kappa ns} + j_{\kappa ps} = 0,899 \cdot 10^{-10} + 0,561 \cdot 10^{-10} = 1,46 \cdot 10^{-10} \text{ A/cm}^2.$$

Ток насыщения коллектора с учетом полной площади коллектора (см. табл. 5.5),

$$I_{\rm K0}^{'} = A_{\rm K} j_{\rm K0}^{'} = 61, 3 \cdot 10^{-6} \cdot 1, 46 \cdot 10^{-10} = 8,95 \cdot 10^{-15} \ {\rm A/cm}^2.$$

Сопротивление активной области базы рассчитаем по формуле, используя данные табл. 5.2:

$$r_{\rm EA} = \frac{1}{8} \rho_{s\rm EA} \frac{l}{z} = \frac{5,58 \cdot 10^3 \cdot 10 \cdot 10^{-4}}{8 \cdot 50 \cdot 10^{-4}} = 140 \text{ Om}.$$

Сопротивление пассивной области базы

$$r_{\rm E\Pi} = \frac{1}{2} \rho_{s\rm E\Pi} \frac{(y_2 - y_1)}{z} = \frac{257 \cdot 10 \cdot 10^{-4}}{2 \cdot 50 \cdot 10^{-4}} = 26 \text{ Om}.$$

Сопротивление растекания базового контакта рассчитаем по формуле

$$r'_{\rm BM} = \frac{\sqrt{\rho_{s\rm B\Pi}\rho_c}}{z} \operatorname{cth}\left(\sqrt{\frac{\rho_{s\rm B\Pi}}{\rho_c}}y\right). \tag{5.29}$$

Примем

$$\rho_c = 3, 0 \cdot 10^{-5} \text{ Om} \cdot \text{cm}^2; \quad y = y_3 - y_2 = 10 \text{ MKM}.$$

Аргумент гиперболического котангенса в формуле (5.29) $\sqrt{\rho_{s \text{БП}}/\rho_c} y_{\text{м}} = \sqrt{257/3 \cdot 10^{-5}} \cdot 10 \cdot 10^{-4} = 2,93$, соответственно, cth 2,93 ≈ 1 и сопротивление

$$r'_{\rm EM} = \sqrt{\rho_{s \rm E\Pi} \rho_c} / z = \sqrt{257 \cdot 3 \cdot 10^{-5}} / 50 \cdot 10^{-4} = 17,6 \text{ Om}$$

Контактное сопротивление $r_{\rm BM}=r_{\rm BM}'/2=8,8$ Ом. Сопротивление базы транзистора

$$r_{\rm E} = r_{\rm EA} + r_{\rm E\Pi} + r_{\rm EM} \approx 140 + 26 + 9 = 175 \text{ Om}.$$

Сопротивление тела коллектора имеет две составляющие, первая из которых определяется падением напряжения на сопротивлении высокоомного слоя коллектора *n*-типа электропроводности, а вторая – падением напряжения на сопротивлении низкоомной подложки n^+ -типа с концентрацией примеси $N_n = 10^{20}$ см⁻³, удельным сопротивлением $\rho_{\Pi} = 0,88 \cdot 10^{-3}$ Ом · см и толщиной $\omega_{\Pi} = 200$ мкм. Первая составляющая

$$r_{\rm kk1} \approx \rho_{\rm k} \omega_{\rm k} / A_{\rm b} = 0,595 \cdot 2,18 \cdot 10^{-4} / 5 \cdot 10^{-6} \approx 26 \text{ Om}.$$

Толщина квазиэлектронейтрального *n*-коллектора рассчитывалась при $U_{\rm K} = 0$. С учетом данных табл. 5.6 при этом $\delta_{2\kappa} = 0,32$ мкм и $\omega_{\kappa} = \omega_{\kappa \tau} - \delta_{2\kappa} = 2,5-0,32 = 2,18$ мкм.

Вторая составляющая

$$r_{\rm kk2} \approx \rho_{\rm ff} \omega_{\rm ff} / A = 0,88 \cdot 10^{-3} \cdot 200 \cdot 10^{-4} / 5 \cdot 10^{-6} \approx 3,5 \; {\rm Om}.$$

Результирующее сопротивление тела коллектора

$$r_{\rm kk} = r_{\rm kk1} + r_{\rm kk2} = 26 + 3, 5 = 29, 5 \,\,{\rm Om}$$

Рассчитаем удельную барьерную емкость эмиттера при $U_{\Im} = 0$ (ширина ОПЗ дана в табл. 5.5):

$$C'_{9\,\text{6ap}} = \varepsilon \varepsilon_0 / \delta_{90} = 12 \cdot 8,85 \cdot 10^{-14} / 0,175 \cdot 10^{-4} = 6,07 \cdot 10^{-8} \, \Phi/\text{cm}^2.$$

Барьерная емкость эмиттера при $U_{\Im}=0$

$$C'_{\text{3 fap}} = AC'_{\text{3 fap}} = 8,39 \cdot 10^{-6} \cdot 6,07 \cdot 10^{-8} = 0,509 \cdot 10^{-12} \Phi = 0,509 \, \text{IT}\Phi.$$

В рабочем режиме при $I_{\Im} = 1$ мА имеем $U_{\Im} = 0,71$ В; $\delta_{\Im} = 0,09$ мкм и барьерная емкость эмиттера $C_{\Im \, 6ap} = 0,99 \cdot 10^{-12} \Phi = 0,99 \, \mathrm{n}\Phi.$

Удельную и полную барьерную емкость коллектора рассчитываем пи $U_{\rm K} = -5$ В (при этом $\delta_{\kappa} = 1,17$ мкм, как следует из табл. 5.6):

$$C'_{\text{K foap}} = 12 \cdot 8,85 \cdot 10^{-14}/1, 17 \cdot 10^{-4} = 0,908 \cdot 10^{-8} \text{ } \Phi/\text{cm}^2;$$

 $C_{\text{K foap}} = AC'_{\text{K foap}} = 61, 3 \cdot 10^{-6} \cdot 0,908 \cdot 10^{-8} = 0,556 \cdot 10^{-12} \Phi = 0,556 \pi \Phi.$

4. Рассчитаем параметры Т-образной эквивалентной схемы для малого сигнала в рабочей точке. Дифференциальное сопротивление эмиттера r_{3} в соответствии с формулой

$$r_{\vartheta} = \frac{dU_{\vartheta}}{dI_{\vartheta}}\Big|_{U_{\mathrm{K}=const}} = \frac{u_{\vartheta}}{i_{\vartheta}}\Big|_{u_{\mathrm{K}=0}} = \frac{\varphi_{T}}{I_{\vartheta} + I_{\vartheta 0}'}$$

при $I_{\Im} = 1$ мА составляет 25,8 Ом.

Рассчитаем первую составляющую дифференциальной выходной проводимости g'_{κ} в рабочей точке $I_{\Im} = 1$ мА; $U_{K} = -5$ В. Так как величина α_{N} и ширина ОПЗ определялись численными методами, расчет g'_{κ} надо вести с использованием формулы

$$g_{\mathbf{k}}^{'} = I_{\Im} \frac{d\alpha}{dU_{\mathbf{K}}} = I_{\Im} \left| \frac{d\alpha}{d\omega} \right| \left| \frac{d\delta_{\mathbf{k}1}}{d\delta_{\mathbf{k}}} \right| \left| \frac{d\delta_{\mathbf{k}}}{dU_{\mathbf{K}}} \right|.$$

Проведенный ранее расчет показал, что при $I_{\Im} = 1$ мA; $U_{\rm K} = -5$ В величина $\varkappa_N = 1 - 6,07 \cdot 10^{-3}$; $\gamma_N = 1 - 2,17 \cdot 10^{-3}$; $\alpha_N = 1 - 8,24 \cdot 10^{-3}$; $\beta_N = 121,4$ (такая форма записи предпочтительнее для сохранения точности значения параметров). По уже приведенной численной методике надо повторить все расчеты при изменении напряжения на коллекторе, например, на 1 В. Задавая $U_{\rm K} = -6$ В, получаем $\varkappa_N = 1 - 5,88 \cdot 10^{-3}$; $\gamma_N = 1 - 2,15 \cdot 10^{-3}$; $\alpha_N = 1 - 8,03 \cdot 10^{-3}$; $\beta_N = 124,5$.

Окончательно

$$g'_{\rm K} = I_{\Im} d\alpha_N / dU_{\rm K} = 10^{-3} {\rm A} \cdot 0, 21 \cdot 10^{-3} / 1{\rm B} = 0, 21 \cdot 10^{-6} {\rm Om}^{-1}.$$

Если бы эта составляющая была единственная, то дифференциальное сопротивление коллектора базы было бы равно $r_{\rm \kappa}=1/g'_{\rm \kappa}=4,76~{\rm MOm}.$

Для определения второй составляющей проводимости коллектора g'_{κ} необходимо рассчитать ток генерации носителей в ОПЗ коллектора, определяемый формулой

$$I_{RGK}^{-} = A_{\kappa}qn_i\delta_{\kappa}(U_{\rm K})/(2\tau_{0\kappa}), \qquad (5.30)$$

где $\tau_{0\kappa} = 7,26 \cdot 10^{-8}$ с – генерационное время жизни носителей заряда в p - n- переходе.

Воспользовавшись данными табл. 5.6 при $U_{\rm K} = -5$ В, получим $\delta_{\rm K} = 1,17$ мкм; $I_{RGK}^- = 1,106 \cdot 10^{-10}$ А, а при $U_{\rm K} = -6$ В получим $\delta_{\rm K} = 1,24$ мкм; $I_{RGK}^- = 1,172 \cdot 10^{-10}$ А. На основании этих данных вычисляем

$$g_{\rm K}^{''} = dI_{RGK}^{-}/dU_{\rm K} = 1,172 \cdot 10^{-10} - 1,106 \cdot 10^{-10} = 6,6 \cdot 10^{-12} \,\,{\rm Om}^{-1}.$$

Таким образом, $g''_{\kappa} << g'_{\kappa}$, и поэтому дифференциальное сопротивление коллектора $r_{\kappa} = 4,76$ МОм.

Рассчитываем коэффициент обратной связи по напряжению, определяемый формулой

$$\mu_{\Im K} = \frac{dU_{\Im}}{dU_{K}}\Big|_{I_{\Im} = const} = \frac{u_{\Im}}{u_{K}}\Big|_{i_{\Im} = 0}$$

В соответствии с граничными условиями для концентрации неосновных носителей

$$\Delta n(x_{23}) = n_{p06}(x_{23}) [\exp(U_{3}/\varphi_{T}) - 1].$$
(5.31)

Выразим из этого выражения напряжение

$$U_{\Im} = \varphi_T \ln[\Delta n(x_{2\Im})/n_{p06}(x_{2\Im}) + 1].$$
 (5.32)

Зададим напряжение на коллекторе $U_{\rm K} = -5$ В. При этом из табл. 5.7 имеем $\Delta n_{\rm 91} = \Delta n(x_{29}) = 4,749 \cdot 10^{16}$ см⁻³ при $x_9 = 1,845$ мкм. Увеличим обратное напряжение коллектора на 1 В до $U_{\rm K} = -6$ В. Проводя вычисления $\Delta n(x)$ по изложенной ранее методике, получаем $\Delta n_{92} = \Delta n(x_{29}) =$ $4,704 \cdot 10^{16}$ см⁻³. Пренебрегая в формуле (5.32) единицей, находим

$$\Delta U_{\Im} = U_{\Im 1} - U_{\Im 2} \approx \varphi_T \ln(\Delta n_{\Im 1} / \Delta n_{\Im 2}) = 2,456 \cdot 10^{-4} \text{ B}.$$

Так как изменение напряжения $\Delta U_{\rm K}$ составляет 1 В, то

$$\mu_{\mathfrak{S}\mathfrak{K}} = dU_{\mathfrak{S}}/dU_{\mathfrak{K}} = \Delta U_{\mathfrak{S}}/\Delta U_{\mathfrak{K}} = 2,456 \cdot 10^{-4}.$$

Сопротивление базы и коэффициенты передачи тока базы рассчитаны ранее.

5. Первоначально оценим напряжение пробоя коллекторного перехода, аппроксимируя распределение примесей в нем линейным законом с градиентом $a_{\kappa} = 4,34 \cdot 10^{20}$ см⁻⁴. Расчет по формуле

$$U_{\rm K \, npo6}(B) \approx 60 \left(\frac{\Delta E}{1,1}\right)^{1,2} \left(\frac{a}{3 \cdot 10^{20}}\right)^{-0,4},$$
 (5.33)

где *a* – градиент концентрации примеси в *p*-*n*-переходе, см⁻⁴, дает $U_{\rm K npo6} \approx 52$ В. Это грубая оценка. Номограммы, основанные на точных расчетах напряжения лавинного пробоя, представлены в книге [7] и приведены в приложении на рис. А.14. По этим номограммам можно уточнить значение $U_{\rm K npo6} = 65$ В.

Напряжение лавинного пробоя эмиттерного *p*-*n*-перехода можно также оценить по формуле (5.33). Оценка дает $U_{\Im \text{ проб}} \approx 14 \text{ B}.$

Данные табл. 5.6 показывают, что напряжение смыкания $U_{\rm c \ MK}$ значительно превышает напряжение лавинного пробоя коллектора. Пробивное напряжение коллектора транзистора с общим эмиттером при нулевом токе базы можно оценить по формуле $U_{\alpha} = U_{\text{K проб}} \sqrt[n]{1 - \alpha_{N0}}$, полагая n = 3, $\beta_{N0} = 121$ и $U_{\text{K проб}} = 65$ В:

$$U_{\text{K}\Im \text{ проб}} = U_{\alpha} = 65/\sqrt[3]{121+1} \approx 16 \text{ B}.$$

Надо отметить, что полученное значение пригодно только в качестве очень грубой оценки.

Будем считать, что для кремниевого транзистора максимальная температура перехода $T_{j\ max} = 150$ °C. Тепловое сопротивление переход-корпус, учитывая малые размеры эмиттера и боковое растекание тепла, можно оценить по формуле

$$R_{\text{т II-K}} \approx 1/(2\lambda\sqrt{A_{\Theta}}) = 1/(2\cdot 1, 45\sqrt{5\cdot 10^{-6}}) = 154 \text{ K/Bt}.$$

Выберем корпус с тепловым сопротивлением $R_{\rm T\ K-c} = 300$ K/Bт. Тогда полное сопротивление $R_{\rm T\ II-c} = R_{\rm T\ II-K} + R_{\rm T\ K-c} = 454$ °C/Bт. При температуре окружающей среды $T_0 = 25$ °C максимальная мощность, рассеиваемая коллектором:

$$P_{\text{K max}} = (T_{j \text{ max}} - T_0)/R_{\text{T n-c}} = (150 - 25)/454 = 0,286 \text{ Bt}.$$

Задание № 6

Расчет основных параметров тиристора

Расчет параметров тиристоров более сложен, чем расчет параметров биполярных транзисторов. Рассмотрим пример упрощенного оценочного расчета, включающий определение некоторых геометрических размеров *p*-*n*-*p*-*n*-структуры, электрофизических характеристик отдельных слоев и ряда основных электрических параметров тиристора. Будем считать, что в рассматриваемом приборе базовые и эмиттерные области равномерно легированы и площади всех *p*-*n*-переходов равны. Его структура аналогична представленной на рис. А.15. Параметры структуры для каждого варианта расчета приведены в табл. 6.2.

Задано: 1. Материал исходной пластины – кремний *n*-типа электропроводности.

2. Электрофизические характеристики и геометрические размеры областей структуры:

Таблица 6.1

Параметр	p_1 -база	p_2 -эмиттер	<i>n</i> ₁ -эмиттер
$N, {\rm cm}^{-3}$	$3 \cdot 10^{16}$	$2 \cdot 10^{20}$	$5 \cdot 10^{20}$
ω , MKM	50	100	50
τ , MKC	1,0	0,03	0,001

Параметры структуры тиристора

3. Электрические параметры: средний ток в открытом состоянии $I_{\text{пр} max} = 10$ A; максимально допустимое повторяющееся напряжение $U_{\text{повт}} = 600$ B; ток управляющего электрода $I_{\text{y}} = 0$.

Определить: 1. Электрофизические параметры базовой области n_2 ; концентрацию донорной примеси N_{n2} ; удельное сопротивление ρ_{n2} ; время жизни неосновных носителей заряда τ_p^{n2} .

2. Геометрические размеры структуры: толщину базы *n*-типа ω_{n2} ; площади *p*-*n*-переходов А. **3.** Электрофизические параметры тиристора: ток включения $I_{\rm вкл}$, ток выключения $I_{\rm выкл}$ и остаточное напряжение $U_{\rm откр}$.

Таблица 6.2

Парамотр	Номер варианта						
Параметр	1	2	3	4	5	6	7
Концентрация в p_1 -базе N , см ⁻³	$1, 0.10^{16}$	$2, 0.10^{16}$	$4, 0.10^{16}$	$3, 0.10^{16}$	$5, 0.10^{16}$	$6, 0.10^{16}$	$7, 0.10^{16}$
Концентрация в p_2 -эмиттере N, см ⁻³	$1, 7 \cdot 10^{20}$	$1, 8 \cdot 10^{20}$	$1, 9 \cdot 10^{20}$	$2, 0.10^{20}$	$2, 1 \cdot 10^{20}$	$2, 2 \cdot 10^{20}$	$2, 3 \cdot 10^{20}$
Концентрация в n_1 -эмиттере N, cm^{-3}	$4, 7 \cdot 10^{20}$	$4, 8 \cdot 10^{20}$	$4, 9 \cdot 10^{20}$	$5, 0.10^{20}$	$5, 1 \cdot 10^{20}$	$5, 2 \cdot 10^{20}$	$5, 3 \cdot 10^{20}$
Время жизни ННЗ в <i>p</i> ₁ -базе <i>т</i> , мкс	1,1	1,2	1,3	1,0	1,4	1,5	1,6
Время жиз- ни ННЗ в p_2 -эмиттере τ , мкс	0,009	0,01	0,02	0,03	0,04	0,05	0,06
Время жиз- ни ННЗ в n_1 -эмиттере τ , мкс	0,0011	0,0012	0,0013	0,001	0,0014	0,0015	0,0016
Толщина p_1 -базы ω , мкм	47	48	49	50	51	52	53
Толщина p_2 -эмиттера ω , мкм	97	98	99	100	101	102	103
Толщина n_1 -эмиттера ω , мкм	47	48	49	50	51	52	53

Варианты заданий

Порядок расчета

1. Расчет начинаем с определения электрофизических параметров базовой *n*-области. Для выбора удельного сопротивления исходной пластины кремния используем условие запаса

$$U_{\text{повт}} = 0,75U_{\text{проб}}; \quad U_{\text{проб}} = U_{\text{повт}}/0,75 = 600/0,75 = 800 \text{ B}.$$

По кривой зависимости напряжения лавинного пробоя от концентрации донорной примеси (см. рис. А.1) находим концентрацию доноров в базе *n*-типа $N_{n2} = 3 \cdot 10^{14}$ см⁻³. Удельное сопротивление исходной пластины кремния $\rho_{n2} = 15$ Ом · см (см. рис. А.2). Марка такого кремния 2А КЭФ 15/0,1, т.е. $L_p = 0,01$ см и

$$au_p^{n2} = L_p^2 = 0,01^2/12 = 8$$
 мкс

2. Определяем геометрические размеры структуры. Толщину *n*-базы тиристора обычно принимают в 1,5 раза большей ширины ОПЗ коллекторного перехода при напряжении $U_{\rm проб}$:

$$\delta_{n2} = \sqrt{\frac{2\varepsilon\varepsilon_0 U_{\text{проб}}}{qN_{n2}}} = \sqrt{\frac{2\cdot 12\cdot 8,86\cdot 10^{-14}\cdot 800}{1,6\cdot 10^{-19}\cdot 3\cdot 10^{14}}} \approx 60 \text{ MKM}.$$

Тогда $\omega_{n2} = 1, 5; \, \delta_{n2} = 1, 5 \cdot 60 \approx 90$ мкм. Принимаем $\omega_{n2} = 100$ мкм.

Площадь структуры определяем на основании допустимой плотности тока для кремниевых приборов $j_{max} = 10^2 A/cm^2$, откуда

$$A = I_{\text{mpmax}} / j_{\text{max}} = 10 / 10^2 = 0, 1 \text{ cm}^2.$$

3. Для определения токов включения и выключения воспользуемся графоаналитическим методом. Отметим, что нет необходимости строить ВАХ тиристора, так как эти параметры легко находятся на основании зависимости $F(I) = I(1 - \alpha_1 - \alpha_2)$.

Построение начинаем с расчета токовых зависимостей коэффициентов передачи составных транзисторов

$$\alpha_1(I) = \gamma_1(I)\varkappa_1; \quad \alpha_2(I) = \gamma_3(I)\varkappa_2.$$

Коэффициенты переноса носителей через базы определим согласно формулам, считая их не зависимыми от тока эмиттера:

$$\varkappa_1 = \operatorname{sech} \frac{\omega_{p1}}{L_n} = \frac{2}{\exp\left(\omega_{p1}/L_n\right) + \exp\left(-\omega_{p1}/L_n\right)};$$

$$\varkappa_2 = \operatorname{sech} \frac{\omega_{n2}}{L_p} = \frac{2}{\exp\left(\omega_{n2}/L_p\right) + \exp\left(-\omega_{n2}/L_p\right)}$$

Диффузионная длина электронов в *p*-базе

$$L_n = \sqrt{D_n \tau_n^{p1}} = \sqrt{36 \cdot 1 \cdot 10^{-6}} = 6 \cdot 10^{-3} = 60$$
 MKM.

Диффузионная длина дырок в n-базе $L_p = 0,01$ см = 100 мкм. Коэффициент переноса электронов через p-базу

$$\varkappa_1 = \frac{2}{\exp\left(50/60\right) + \exp\left(-50/60\right)} = 0,73.$$

Коэффициент переноса дырок через *п*-базу

$$\varkappa_2 = \frac{2}{\exp\left(100/100\right) + \exp\left(-100/100\right)} = 0,65.$$

Зависимость коэффициента инжекции от тока, протекающего через тиристор, выражается формулой

$$\gamma(I) = \frac{\sqrt{1 + I/I_0} - 1}{\sqrt{1 + I/I_0} + 1},$$

где $I_0 = I_{R0}^2 / 4I_s$.

$$I_{R0} = A \frac{q n_i \varphi_T \delta_0}{\varphi_{\kappa} \sqrt{\tau_{n0} \tau_{p0}}}; \quad \delta_0 = \frac{2\varepsilon \varepsilon_0 \varphi_{\kappa}}{q N};$$
$$\varphi_{\kappa} = \varphi_{\tau} \ln \frac{N_n N_p}{n_i^2}.$$

Дырочный и электронный токи насыщения эмиттерных переходов:

$$I_{ps} = A \frac{q D_p P_{n0}}{L_p \operatorname{th}(\omega_{n2}/L_p)};$$
$$I_{ns} = A \frac{q D_n P_{p0}}{L_n \operatorname{th}(\omega_{p1}/L_n)}.$$

Вычислим значения всех величин, имеющихся в расчетных формулах:

th
$$(\omega_{n2}/L_p) = \frac{\exp(100/100) - \exp(-100/100)}{\exp(100/100) + \exp(-100/100)} = 0,76;$$

$$\operatorname{th}(\omega_{p1}/L_n) = \frac{\exp(50/60) - \exp(-50/60)}{\exp(50/60) + \exp(-50/60)} = 0,69;$$
$$p_{n0} = n_i^2/n_{p0} = n_i^2/N_{n2} = (1,9 \cdot 10^{10})^2/3 \cdot 10^{14} = 1,2 \cdot 10^6 \text{ cm}^{-3};$$
$$n_{p0} = n_i^2/p_{n0} = n_i^2/N_{p1} = (1,9 \cdot 10^{10})^2/3 \cdot 10^{16} = 1,2 \cdot 10^4 \text{ cm}^{-3}.$$

Токи насыщения:

$$I_{ps3} = 0, 1 \cdot 1, 6 \cdot 10^{-19} \cdot 12 \cdot 1, 2 \cdot 10^{6} / 100 \cdot 10^{-4} \cdot 0, 76 = 3 \cdot 10^{-11} \text{ A};$$

$$I_{ns1} = 0, 1 \cdot 1, 6 \cdot 10^{-19} \cdot 36 \cdot 1, 2 \cdot 10^{4} / 60 \cdot 10^{-4} \cdot 0, 69 = 1, 7 \cdot 10^{-12} \text{ A}.$$

Контактные разности потенциалов для переходов П1 и П3:

$$\varphi_{\kappa 1} = \varphi_T \ln \frac{N_{n1} N_{p1}}{n_i^2} = 2, 3 \cdot 0,025 \lg \frac{5 \cdot 10^{20} \cdot 3 \cdot 10^{16}}{(1,9 \cdot 10^{10})^2} = 0,95 \text{ B};$$

$$\varphi_{\kappa 3} = \varphi_T \ln \frac{N_{n2} N_{p2}}{n_i^2} = 2, 3 \cdot 0,025 \lg \frac{3 \cdot 10^{14} \cdot 2 \cdot 10^{20}}{(1,9 \cdot 10^{10})^2} = 0,82 \text{ B}$$

Ширина ОПЗ эмиттерных переходов:

$$\delta_{01} = \sqrt{\frac{2\varepsilon\varepsilon_0\varphi_{\mathrm{K1}}}{qN_{p1}}} = \sqrt{\frac{2\cdot12\cdot8,86\cdot10^{-14}\cdot0,95}{1,6\cdot10^{-19}\cdot3\cdot10^{16}}} = 2\cdot10^{-5} \mathrm{\,cm};$$

$$\delta_{03} = \sqrt{\frac{2\varepsilon\varepsilon_0\varphi_{\mathrm{K3}}}{qN_{n2}}} = \sqrt{\frac{2\cdot12\cdot8,86\cdot10^{-14}\cdot0,82}{1,6\cdot10^{-19}\cdot3\cdot10^{14}}} = 1,9\cdot10^{-4} \mathrm{\,cm}.$$

Произведения $\sqrt{\tau_{n0}\tau_{p0}}$ для эмиттерных переходов:

$$\sqrt{\tau_p^{n1} \tau_n^{p1}} = \sqrt{0,001 \cdot 10^{-6} \cdot 1 \cdot 10^{-6}} = 0,03 \cdot 10^{-6} \text{ c} = 0,03 \text{ MKC};$$
$$\sqrt{\tau_p^{n2} \tau_n^{p2}} = \sqrt{0,03 \cdot 10^{-6} \cdot 8 \cdot 10^{-6}} = 0,5 \cdot 10^{-6} \text{ c} = 0,5 \text{ MKC}.$$

Характеристические токи генерации-рекомбинации:

$$I_{R01} = A \frac{q n_i \varphi_T \delta_{01}}{\phi_{\kappa 1} \sqrt{\tau_p^{n1} \tau_n^{p1}}} = 0, 1 \cdot \frac{1, 6 \cdot 10^{-19} \cdot 1, 9 \cdot 10^{10} \cdot 0, 025 \cdot 2 \cdot 10^{-5}}{0, 95 \sqrt{3 \cdot 10^{-8}}} = 5, 3 \cdot 10^{-9} \text{ A};$$

$$\begin{split} I_{R03} &= A \frac{q n_i \varphi_T \delta_{01}}{\phi_{\kappa 3} \sqrt{\tau_p^{n 2} \tau_n^{p 2}}} = 0, 1 \cdot \frac{1, 6 \cdot 10^{-19} \cdot 1, 9 \cdot 10^{10} \cdot 0, 025 \cdot 1, 9 \cdot 10^{-5}}{0, 82 \sqrt{5 \cdot 10^{-7}}} \\ &= 3, 5 \cdot 10^{-9} \text{ A}; \\ I_{01} &= I_{R01}^2 / 4 I_{ns} = (5, 3 \cdot 10^{-9})^2 / 4 \cdot 1, 7 \cdot 10^{-12} = 4 \cdot 10^{-6} \text{ A} = 4 \text{ MKA}; \\ I_{03} &= I_{R03}^2 / 4 I_{ps} = (3, 5 \cdot 10^{-9})^2 / 4 \cdot 3 \cdot 10^{-11} = 1 \cdot 10^{-7} \text{ A} = 0, 1 \text{ MKA}. \end{split}$$

Рассчитав токовые зависимости коэффициентов инжекции, построим график функции $F(I) = I(1 - \alpha_1 - \alpha_2)$ (рис. А.16).

Ток выключения находим по точке пересечения функции F(I) с осью ординат: $I_{\rm выкл} = 55$ мкА. Ток включения соответствует максимуму функции: $I_{\rm вкл} = 15$ мкА.

Для определения напряжения в открытом состоянии тиристора при токе I = 10 А необходимо знать ВАХ тиристора в открытом состоянии. Анодное напряжение $U_A = U_1 - U_2 + U_3$.

Полный ток через тиристор в открытом состоянии равен токам через все *p*-*n*-переходы: $I = I_1 = I_2 = I_3$. При прямом направлении напряжения на переходе для $U \gtrsim 0,5$ В токами рекомбинации в ОПЗ можно пренебречь, поэтому для коллекторного перехода $I_{s2} = I_{ps2} + I_{ns2}$. Так как $N_{p1} >> N_{n2}$, то $I_{s2} = I_{ps2} = I_{ps3} = 3 \cdot 10^{-11}$ A;

$$I_2 = I_{ps2} \exp((U_2/\varphi_T)) = 3 \cdot 10^{-11} \exp((U_2/\varphi_T)).$$

Логарифмируя и преобразуя зависимости токов от напряжений на *p*-*n*-переходах, получаем

$$U_1 = 2, 3\varphi_T \lg \frac{I_1}{1, 7 \cdot 10^{-12}};$$
$$U_2 = 2, 3\varphi_T \lg \frac{I_2}{3 \cdot 10^{-11}}; \quad U_3 = 2, 3\varphi_T \lg \frac{I_3}{3 \cdot 10^{-11}};$$

Анодное напряжение

$$U_A = U_1 - U_2 + U_3 = U_1 = 2, 3\phi_T \lg \frac{I}{1, 7 \cdot 10^{-12}}.$$

Напряжение в открытом состоянии тиристора

$$U_{\text{откр}} = U_1(I_1 = 10) = 2, 3 \cdot 0,025 \log \frac{10}{1,7 \cdot 10^{-12}} = 0,735 \text{ B}.$$

Заключение

Представленные в данном пособии учебные задания по расчету параметров основных полупроводниковых приборов (диодов, транзисторов и тиристоров) носят рекомендательный характер и не отражают всего многообразия методов и подходов к расчету и проектированию полупроводниковых приборов.

Современные методы расчета и проектирования ориентированы на широкое использование компьютерных средств поддержки, так называемых CAD-систем. Применение их позволяет ускорить и автоматизировать некоторые этапы проектирования полупроводниковых приборов.

Однако в основу указанных систем положены принципы, основанные на классических математических и физических моделях полупроводниковых приборов, методах их получения, кратко рассмотренные в данном пособии.

Литература

- Викулин И. М., Стафеев В. М. Физика полупроводниковых приборов. М. : Радио и связь, 1990. — 264 с.
- 2. Зи С. Физика полупроводников: в 2 кн. Кн.1. М. : Мир, 1984. 456 с.
- 3. Лебедев А. И. Физика полупроводниковых приборов. М. : ФИЗМАТ-ЛИТ, 2008. — 488 с.
- 4. Брук В. А., Гаршенин В. В., Курносов А. И. Производство полупроводниковых приборов. — М. : Высшая школа, 2006. — 264 с.
- 5. Крутякова М. Г., Чарыков Н. А., Юдин В. В. Полупроводниковые приборы и основы их проектирования. — М. : Радио и связь, 1983. — 352 с.
- 6. Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников. М. : Наука, 1977. — 672 с.
- 7. Грехов И. В., Сережкин Ю. Н. Лавинный пробой p-n-перехода в полупроводниках. — Л. : Энергия, 1980. — 152 с.

Приложение А

Справочные графики и таблицы

Эмпирическая формула для подвижности носителей заряда

Подвижность носителей заряда уменьшается с ростом концентрации легирующей примеси из-за дополнительного рассеяния носителей заряда на ионизированных атомах примеси. Зависимость подвижности электронов и дырок в кремнии и германии при температуре 300 К от суммарной концентрации ионизированных атомов легирующей примеси может быть представлена следующей эмпирической зависимостью:

$$\mu = \mu_1 + \frac{\mu_2}{1 + (N^+/N_0)^{\alpha}},$$

где N^+ – суммарная концентрация рассе
ивающих центров. Остальные параметры представлены в табл. А.1

Таблица А.1

Полупроводник	$\mu_1, \mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$	$\mu_2, \mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$	N_0, cm^{-3}	α					
	Для электронов								
Кремний	65	1265	$8, 5 \cdot 10^{16}$	0,72					
Для дырок									
	48	447	$6, 3 \cdot 10^{16}$	0,76					
Для электронов									
Германий	50	3850	$8, 1 \cdot 10^{16}$	0,48					
Для дырок									
	42	1860	$1, 4 \cdot 10^{17}$	0,43					

Параметры полупроводников

Таблица А.2

Скорость света в вакууме	$c = 3,00 \cdot 10^{10} \text{ cm} \cdot \text{c}^{-1}$
Постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж · K ⁻¹ =
	$= 8,62 \cdot 10^{-5} \text{ sB} \cdot \text{K}^{-1}$
Число Авогадро	$N_0 = 6,02 \cdot 10^{23}$ моль $^{-1}$
Заряд электрона	$q = 1,60 \cdot 10^{-19}$ Кл
Масса покоя электрона	$m = 9, 1 \cdot 10^{-28}$ г = $9, 1 \cdot 10^{-31}$ кг
Постоянная Планка	$h = 6,62 \cdot 10^{-34}$ Дж · с
Электрическая постоянная	$\varepsilon_0 = 8,85 \cdot 10^{-14} \Phi \cdot \mathrm{cm}^{-1}$
Абсолютная магнитная проницаемость	$\mu_0 = 4 \cdot \pi \cdot 10^{-7} \ \Gamma \cdot \mathbf{m}^{-1}$
Энергия фотона с длиной волны $\lambda = 1$ мкм	$E = 1,24$ \Rightarrow B

Физические постоянные

Рис. А.1. Зависимость напряжения лавинного пробоя от концентрации примеси для резких *p*-*n*-переходов в германии, кремнии и арсениде галлия при 300 К

Рис. А.2. Зависимость удельного сопротивления германия, кремния и арсенида галлия от концентрации примеси

Рис. А.З. Зависимость предельной растворимости примесных элементов в кремнии от температуры

Рис. А.4. Зависимость собственной концентрации носителей заряда в германии, кремнии и арсениде галлия от температуры

Рис. А.5. Зависимость подвижности электронов и дырок от концентрации примеси в германии (а) и кремнии (б) при 300 К

Рис. А.6. Температурная зависимость коэффициента диффузии акцепторных и донорных примесей в германии (а) и кремнии (б) от температуры

Рис. А.7. Структура сплавного (а) и планарного (б) транзисторов. Вверху показана часть топологии структуры

Рис. А.8. Эквивалентная схема транзистора для большого сигнала: а – общая; б – для нормального активного режима

Рис. А.9. Структура планарно-эпитаксиального транзистора (а) и распределение легирующей примеси, представленное в полулогарифмическом (б) и линейном (в) масштабах

Рис. А.10. Планарно-эпитаксиальный *n-p-n*-транзистор: а – структура; б – топология

Рис. А.11. Зависимость подвижности электронов и дырок от координаты в активной области структуры транзистора

Рис. А.12. Зависимость концентрации легирующей примеси от координаты в активной области структуры транзистора

Рис. А.13. Номограмма для расчета расширения ОПЗ-коллектора
 $p\hbox{-}n\hbox{-}{\rm перехода}$

Рис. А.14. Зависимость напряжения пробоя диффузионных *p-n*-переходов от концентрации примеси в исходном кристалле кремния

Рис. А.15. Структура тиристора (а), распределение концентрации примесей (б) и потенциала (в), диаграмма энергетических зон (г) в состоянии термодинамического равновесия

Рис. А.16. График функции $F(I) = I(1 - \alpha_1 - \alpha_2)$

Учебное издание

Новиков С. Г., Елисеева С. В.

Расчетные задания по дисциплине «Проектирование полупроводниковых приборов»

Учебно-методическое пособие

Директор Издательского центра *Т. В. Филиппова* Оригинал макет подготовлен *С. В. Елисеевой* Редактор *Г. И. Петрова*

Подписано в печать 2.06.14. Формат 60×84/16. Усл. печ. л. 4,6. Уч.-изд. л. 4,0 Тираж 100 экз. Заказ № 52/

Оригинал-макет подготовлен в Издательском центре Ульяновского государственного университета 432017, г. Ульяновск, ул. Л. Толстого, 42

Отпечатано с оригинал-макета в Издательском центре Ульяновского государственного университета 432017, г. Ульяновск, ул. Л. Толстого, 42