Печатается по решению Ученого Совета факультета математики и информационных технологий Ульяновского государственного университета

Гисметулин А.Р.

«Создание управляющих программ для станков с ЧПУ в системе Unigraphics NX 6.0»: Учебно-методические указания.- Ульяновск: УлГУ, 2010. 73 с.

Методические указания разработаны с целью привития практических навыков студентам факультета математики и информационных технологий специальности «Моделирование и исследование операций в организационнотехнических системах» по компьютерному проектированию технологических процессов механообработки на станках с числовым программным управлением в системе UG NX6. В методических указаниях дано описание модуля обработки NX6. Описаны функциональные особенности навигатора операций и основных типов операций механообработки, а также приведены методики создания управляющих программ для фрезерной и токарной обработок.

Методическое пособие предназначено для обеспечения курсов «Компьютерное моделирование геометрических объектов» и «Физические основы процессов формообразования» читаемых на кафедре «Математическое моделирование технических систем».

Рецензент:

к.т.н., доцент кафедры «Технология машиностроения» УлГТУ С.И.Рязанов

©Гисметулин А.Р., 2010

© Ульяновский государственный университет, 2010

Введение в модуль обработки NX6

Модуль обработки NX6 позволяет в интерактивном режиме программировать и обрабатывать постпроцессором траектории инструмента для операций фрезерования, сверления, токарной и электроэрозионной обработки. Модуль САМ генерирует траектории инструмента, которые используются для изготовления детали. Система ЧПУ принимает файл траектории инструмента и напрямую управляет перемещениями инструмента и другими действиями станка. Немодифицированный файл траектории инструмента не может быть послан на любой станок для осуществления обработки. Каждый тип станка имеет уникальные потенциальные аппаратные возможности и управляется отдельным компьютером (также называемым контроллером). Например, большинство контроллеров требует специальный код, чтобы включить СОЖ. Большинство систем ЧПУ также ограничивают количество команд группы *M*, которые могут вводится в одном кадре программы. Эта информация не содержится в траектории инструмента, которая создана в NX.

Поэтому, программа траектории инструмента должна измениться, чтобы удовлетворить уникальным параметрам каждой комбинации станок/система ЧПУ. Это преобразование называется постпроцессированием и результатом является обработанная постпроцессором траектория инструмента. На рисунке представлен пример управляющей программы ЧПУ для заданной системы ЧПУ:

і Информация

Файл(F) Изменить(E)	
Информация создана для пользов	ателя: Administrator
Дата	: 18.07.2009 22:22:48
Текущая рабочая деталь	: W:\UGS\NX 6.0\UGII\Part\model2_setup_1.prt
Имя узла	: ulsu
=====================================	
P NOO10 640 617 690 670	
NOO20 G91 G28 Z0.0	
:0030 TO1 MO6	
NOO40 GO G90 X4.0157 Y.2362 S2	6526 MO3
NOO50 G43 Z3.1102 HO1	
NOO60 Z1.4567	
NOO70 G1 Z1.3386 F9.8	
NOO80 X3.4252	
NOO90 X5796	
N0100 X-1.1702	
NO110 Z1.4567	
NO120 GO Z3.1102	
NO130 MO2	
\$	

Основные этапы создания управляющей программы:

1. Создание детали содержащую настройку, включающую всю производственную информацию. Деталь с настройкой может содержать ссылку на обрабатываемую деталь, заготовку, оснастку, прижимы и станок.

- 2. Задание программы, инструмента, метода и группы родительской геометрии.
- 3. Создание операции и задание траектории инструмента.
- 4. Генерация и просмотр траектории инструмента.

5. Постпроцессирование траектории инструмента.

6. Создание цеховой документации.

Для просмотра и управления зависимостями между операциями, геометрией, методами обработки и инструментами в модуле обработки NX6 существует Навигатор операций.

Навигатор операций это окно с графической организацией и древовидной структурой, которая отображает зависимости между геометрией, методами обработки, параметрами инструмента и операциями в пределах программы. Параметры передаются или наследуются из группы в группу и из группы в операцию, на основе их расположения в древовидной структуре. Позволяет просматривать и управлять зависимостями между операциями и группами параметров, чтобы совместно использовать параметры в операциях.

Навигатор операций имеет четыре иерархических вида, которые используются, для создания и управления программой ЧПУ. Каждый **Bud** отображает те же операции согласно содержанию вида: последовательность операций в пределах программы, используемые инструменты, геометрия обработки и методы обработки.

Навигатор операций может быть использован для:

- вырезки или копирования и вставки операции в пределах настройки для детали или между настройками для различных деталей;
- перемещения групп и операций в пределах настройки для детали;
- задания общих параметров в одном расположении группы, таком как группа геометрии *Заготовка*. Параметры передаются (наследуются) операциями в пределах группы;
- отображения траектории инструмента и геометрии операции в графическом окне, чтобы видеть то, что определено и какие области были обработаны;
- отображения заготовки в процессе обработки (ЗвПО) операции фрезерования или токарной обработки.

В Навигаторе операций древовидная структура управляет зависимостями между группами и операциями. Позиция группы или операции определяет, как передаются (наследуются) параметры. Отдельные столбцы отображают различные типы информации. При этом существует возможность выбора столбцов для отображения в каждом виде с помощью команды *Свойства*.

Name	Path	Tool	Method	Order Group
GEOMETRY				
NONE				
FLOWCUT_RE	Generated	UGTI0203_017	MILL_FINISH	PROGRAM
y 🖕 FLOWCUT_SI	Generated	UGTI0203_013	MILL_FINISH	PROGRAM
🔤 🖞 🕐 FLOWCUT_RE	Generated	UGTI0203_017	MILL_FINISH_V	1 PROGRAM
Name	Path	Tool	Geometry	Order Group
METHOD				
NONE				
MILL_SEMI_FINISH				
FLOWCUT_REF_TOOL	Generated	UGTI0203_017	TRIM	PROGRAM
FLOWCUT_SINGLE	Generated	UGTI0203_013	TRIM	PROGRAM
HILL_FINISH_V18_COLORS				
DRILL_METHOD				

Рис. Примеры видов Навигатора операций

Для копирования группы или операции в Навигаторе операций, в соответствующем виде, необходимо выбрать операцию или (группу). На инструментальной панели *Действия*, нажать *Копировать объект* или *Вырезать объект* (или с помощью правой клавиши мыши на операции и выбрать *Копировать* или *Вырезать*). Нажать правую клавишу мыши в необходимом месте маршрута обработки и выбрать *Вставить* или *Вставить внутрь*. Команда Вставить размещает операцию ниже выбранной группы или операции, и скопированная операция не наследует параметры от выбранного расположения. Команда Вставить внутрь размещает операцию в выбранном *Инструменте, Методе, Геометрии или Программе*, и скопированная операция наследует параметры от выбранного расположения (группы). Аналогично можно осуществить копирование операции из одной настройки в другую. Колонки *Навизатора операций*

	itemening in onepaijan						
⁹ Вывести на постпроцессор	Траектория инструмента не была введена, или траектория инструмента изменилась после последнего вывода, и последний вывод является устаревшим.						
🖉 Генерировать	Траектория инструмента для операции никогда не генерировалась, или сгенерированная траектория инструмента является устаревшей.						
Завершено	Траектория инструмента, которая была сгенерирована и выведена (на постпроцессор или в CLSF) не является устаревшей.						
·	Пользователь может перезаписать системное состояние, и указать,						
	что операция закончена, независимо от программных индикаторов. Если состояние всех операций в программе Закончено или Утверждено, то состояние программы Утверждено.						
	Колонка Траектория						
Сгенерированные	Траектория была сгенерирована. Она может содержать или не содержать перемещения инструмента.						
Кнет	Траектория или еще не была сгенерирована, или была удалена.						
🛅 Импортированные	Траектория была импортирована из CLSF. (<i>Инструменты</i> → <i>CLSF</i> → <i>Импорт</i>). Траектория может воспроизводится на экране,						
	выводится на постпроцессор или изменяться в графическом релакторе траекторий инструмента						
🥬 Измененные	Траектория которая была изменена в графическом редакторе траектории инструмента.						
Подозрительные	Обнаружена подозрительная геометрия при генерации траектории инструмента. Может быть допустимой или не допустимой, и должна быть проверена тщательно: для визуального пересечения: Нажать правую клавишу мышки на операции и выбрать Объект — Отобразить. Для диагностики описания условия: Нажать правую клавишу мышки						
	на операции и выбрать <i>Объект→Информация</i> .						
🖕 Преобразованные	Траектория из преобразованной операции.						
Подавленные	Траектория не выводится, и не воздействует на заготовку в процессе обработки. Операция отображается цветом, назначенным на Подавленную траекторию.						
Пустая траектория инструмента	Траектория инструмента была сгенерирована, но не содержит действительное перемещение. Некоторые примеры операции <i>Обработки углов</i> , которые не обнаруживают областей, или операции <i>Глубинного фрезерования</i> без заготовки в процессе обработки, для резания. Операции такие как <i>Управление станком</i> , которые создаются не для перемещений, не отображают это состояние.						
🗳 Блокировка	Траектория инструмента предохранена от перезаписи.						
Кол	тонка Заготовка в процессе обработки (ЗвПО)						

Сгенерированные	Заготовка в процессе обработки сгенерирована и не требует обновления.						
× _{Нет}	Эта операция не имеет IPW [ЗвПо]						
О Требуется перегенерация	Заготовка в процессе обработки для этой операции являет устаревшей. Заготовка в процессе обработки обновляется, если о используется последующей операцией, или если она сгенерирована Динамической визуализации. Этот значок также появляется в столб ЗвПо для всех операций ниже операции, которая являет устаревшей						
	Колонка <i>Контроль зарезов</i>						
× Непроверенный	Операция не была проверена на зарезы, или операция была изменена после последней проверки.						
Инет зарезов Операция была проверена, и перемещений с зарезами не би найдено.							
Зарезы Операция была проверена и найдены перемещения с зареза Подсказка отображает номер зареза.							
Предупреждение Операция была проверена, но результат, возможно, не достовере Например, неоднородная заготовка может воздействовать результаты.							
Ошибка, вызвана отсутствием геометрии детали или контрол геометрии, произошла при проверке операции.							
K	олонки <i>События в начале, События в конце</i>						
	Операция может иметь определяемое пользователем событие управления станком, такое как Включение СОЖ . Подсказка отображает определяемые пользователем события, включенные в операцию.						
Колонка <i>Смена инстр</i> используемо	<i>умента</i> (отображает значок, который показывает тип инструмента по в операции когла в операции есть смена инструмента)						
8	Сверла						
	Фрезерный инструмент						
þ	Токарный инструмент						
Колонка Время (только дл.	я операций фрезеровки, отображает предполагаемое время резания для						
траектории инструмента в формате часы: минуты: секунды.)							
инструмента)							
Колонка <i>Канал</i>	(только многосуппортные станки, отображает номер канала)						

Виды навигатора операций Навигатор операций имеет четыре вида, которые отображают тот же набор операций по-разному.

Вид	Описание
Вид порядка	Организует операции в соответствии с последовательностью, в которой они выполняются на станке. Каждая группа программ представляет отдельный
программ	программный файл, который является выводом на постпроцессор или в CLSF.
	Сортировка колонок выключена в этом виде.
	Организует операции с использованием инструмента и отображает все
🖉 🛰 Вид	инструменты, вызванные из библиотеки инструмента или созданные в
инструментов	текущей настройке. В этом виде можно сгруппировать режущий инструмент в
	револьверной головке для токарной обработке или в инструментальном
	магазине для фрезерной обработки.
i	Организует операции, по геометрии обработки и ориентации СКС. Каждая
Вид	группа геометрии отображает операции в соответствии с
геометрии	последовательностью, в которой они выполняются на станке. Сортировка
	колонок выключена в этом виде.

		9 Operation Navigator - Geometry	
	Contains	Name	Path
		GEOMETRY	
	MCS &	NONE NONE	
	Clearance Plane 🗕 🗕	+ ⊡ • J MCS	
	Part Geometry	- 🖻 🕞 WORKPIECE	
	Blank Boundaries	FACES	
		FACE_MILLING_ZZ_ALL	~
		FACE_MILLING_MIXED	×.
		FACE_MILLING_MANUAL_1	×.
		FACE_MILLING_MANUAL_2	×.
		FACE_MILLING	~
	Организует операции	под общими приложениями обработки,	которые
Вид методов	совместно используют	те же значения параметров например при	черновой,
обработки	получистовой и чистово	й обработках.	

Каждый вид организует операции в группы, которые управляют соответствующими параметрами. Содержание групп наследуется группами и операциями, которые расположены ниже в дереве навигатора. Группы отображают фактическое использование (не использование) их в программе ЧПУ. Например, если используется инструмент, он может иметь одну или несколько операций в виде *Станка*.

Вид программ показывает порядок, в котором операции будут выполняться на станке. Порядок операций может быть перегруппирован в Навигаторе операций в режиме Вид программ. Например, может быть уменьшено количество смен инструмента, изменен порядок операций, изменен инструмент, который используется в операции. Меню *Create Program [Coзdanue программ]* позволяет создавать группы программ. Эти группы программ могут содержать различные операции. Группы программ становятся родительскими для операций, которые в них размещаются в графическом навигаторе операций.

Вид геометрии. Порядок операций в пределах группы геометрии связан с видами *Геометрии и Программ*. При изменении порядка операций в пределах группы геометрии в Виде геометрии, изменения также отражаются в Виде программ. Например, если группа hole_geom содержит операции центровки, сверления и нарезания резьбы, эти 3 операции должны происходить в этом порядке при обработке каждого отверстия. Другие операции в других группах геометрии могут выполняться между этими операциями, но для любого отверстия в группе, операция центровки должна предшествовать операции сверления, которая должна предшествовать операции нарезания резьбы.

Вид	Родительская группа/подтип
drill	DRILL_GEOM и WORKPIECE
mill_planar	WORKPIECE, MILL_BND, MILL_GEOM, MILL_TEXT и MCS
mill_contour	MCS, MILL_GEOM, MILL_BND, MILL_AREA, MILL_TEXT и
	WORKPIECE
mill_multi-axis	MCS, MILL_GEOM, MILL_BND и WORKPIECE
turning	MCS_SPINDLE, WORKPIECE, PART и CONTAINMENT
wire_edm	MCS_WEDM, WEDM_GEOM, SEQUENCE_INTERNAL_TRIM и
	SEQUENCE_EXTERNAL_TRIM
machining_knowledge	MCS, WORKPIECE, MILL_AREA, SIMPLE_HOLE, CB_HOLE, CS_HOLE,
	THD_CB_HOLE, THD_SIMPLE_HOLE, THD_CS_HOLE,
	ALL_FEATURES, FEATURE_PROCESS.
hole_making	MCS, WORKPIECE, MILL_AREA, SIMPLE_HOLE, CB_HOLE, CS_HOLE,
	THD_CB_HOLE, THD_SIMPLE_HOLE, THD_CS_HOLE,
	ALL_FEATURES, FEATURE_PROCESS.

Подтипы родительских групп

die_sequences	SEQUENCE_ZIGZAG, SEQUENCE ZLEVEL, SEQUENCE IPW,
	SEQUENCE_PROFILE_2D и SEQUENCE_PROFILE_3D
mold_sequences	SEQUENCE_ZIGZAG, SEQUENCE ZLEVEL, SEQUENCE IPW,
	SEQUENCE_TOOL, SEQUENCE_ZIGZAG_HSM и
	SEQUENCE_ZLEVEL_HSM

Вид инструмента показывает все операции, в которых инструменты используются, что позволяет анализировать их расположение и решать, об эффективности их расположения. На рисунке ниже показан пример *Вида инструмента*. Только два из этих инструментов фактически используются в операциях. На это указывают значки "плюс"

l	или	"минус",	котс	рый	pac	полагается	слен	за	ОТ	И	имени	ИН	нструмента.
I	Name			Path		Description		Geomet	ry		Method		Order Group
I	GENERIC_I	MACHINE				Generic Machine							
I	📴 NOI	NE				mill_contour							
I	🛛 🖳 🕅 UG1	10203_008				Ball End 2"							
I	📄 🕅 UG1	10203_013				Ball End 1 1/2"							
I	I I I I	FLOWCUT_SINGLE		Generated		FLOWCUT_SINGLE		TRIM		Μ	AILL_FINISH		PROGRAM
I	🛛 🛛 🕅 UG1					Ball End 1"							
I	- 🕅 UG1	TIO2O3_015				Ball End 3/4"							
I	🛛 – 🕅 UG1	TIO2O3_016				Ball End 1/2"							
I	🗄 🕅 UG1	TI0203_017				Ball End 3/8"							
	🗎 🔤 🗖 ບຣາ	10203_018				Ball End 1/4"							
I	- T												

Меню Создания инструмента позволяет создать инструмент для использования в различных типах операций. Доступные типы инструментов, определяются параметрами *Machining Environment [Настройки обработки]*, которые были предварительно заданы. Тип определяет подтип или класс инструментов, которые доступны для выбора. возможность вызова инструмента Сушествует также ИЗ библиотеки. Выбор предварительно заданного инструмента для сверления, фрезерования и токарных резцов, расположенных в библиотеках инструмента. После выбора класса инструмента из этого меню, на экран выводится меню задания Search Criteria [Критериев поиска]. Это меню используется для задания параметров поиска необходимого инструмента. Затем отображается список Search Result [Результат поиска], показывая инструменты, которые соответствуют введенным критериям поиска и будут использованы в программе ЧПУ. При замене базового станка на другой из библиотеки, можно изменять позицию инструмента в инструментальном магазине/кармане. Для этого в Виде инструмента можете перетащить и опустить инструмент (и любые присоединенные операции) из одного кармана инструмента в другой, либо использовать функцию "вырезать и вставить".

В **Виде методов** система отображает операции, сгруппированные вместе по методу обработки (черновая, чистовая, получистовая). Эта организация предоставляет простой выбор метода обработки в операции. При внесении изменения в вид методов, необходимо проверить, как эти изменения отражаются в виде программ, поскольку это вид, который задает последовательность операций. Этот вид может быть использован, чтобы изменить метод обработки для нескольких операций сразу. Например, чтобы изменить цвет перемещений резания для всех черновых операций, следует отредактировать метод *Mill_Rough*, и изменить параметры отображения траектории. Теперь все операции в том методе наследуют новые цвета отображения. Это проще чем изменять параметры отображения в каждой операции. Меню *Создание метода* позволяет создать родительскую группу метода, которая используется для различных типов операций. Допустимые типы, определяются параметрами окружения обработки, которые были выбраны. Тип определяет подтип методов доступных для выбора.

После задания параметров меню метода (тип, подтип, исходная группа и имя) на экран выводится меню задания группы, основанное на выбранном подтипе. Например,

при выборе подтипа MILL_METHOD отображается меню MILL_METHOD и можно задать различные параметры, которые будут назначены для родительской группы MILL_METHOD.

1. Сверление	
Подтип	Описание
SPOT_FACING	Цикл центровки с задержкой.
SPOT_DRILLING	Цикл центровки с задержкой.
U T DRILLING	Базовая операция от точки к точку с циклом сверления.
PECK_DRILLING	Цикл сверления, в котором инструмент выводится из отверстия для ломки (удаления) стружки.
BREAKCHIP_DRILLING	Цикл сверления, в котором инструмент выводится из отверстия для ломки (удаления) стружки.
BORING	Цикл расточки в котором инструмент опускается в отверстие на рабочей подаче и выводится на ускоренной.
REAMING	Цикл развертки, в котором инструмент опускается в отверстие на рабочей подаче и выводится на рабочей.
COUNTERBORING	Цикл сверления с задержкой.
COUNTERSINKING	Цикл сверления до глубины, которая задается диаметром зенковки.
TAPPING	Цикл нарезания резьбы метчиком, в котором инструмент опускается в отверстие на заданной подаче, меняет направление вращения шпинделя и выводится из отверстия на такой же подаче.
THREAD_MILLING	Фрезерование резьбовых отверстий с траекторией по спирали.
MILL_CONTROL	Операция содержит только события управления станком.
F MILL_USER	Эта траектория инструмента сгенерирована программой пользователя при программировании в NX.

Подтипы операций

2. Обработка отверстий

Подтип	Процессор	Описание
THOLE_MAKING	Обработка отверстий	Основная операция обработки отверстия, которая должна быть создана в группе геометрии модуля обработки отверстий. Они создаются с группой геометрии, а не отдельно.
HOLE_MILL	Фрезерование отверстий	Основная операция фрезерования отверстий, которая должна быть создана в группе геометрии модуля обработки отверстий (создаются с группой геометрии, а не отдельно).
MILL_CONTROL	Фрезерование отверстий	Операция содержит только события управления станком.

3. Плоское фрезерование

Подтип	Процессор	Описание
	Фрезерование	Фрезерование области граней имеет геометрию детали,
FACE	граней	область резания, геометрию стенок, контрольную
MILLING_AREA	_	геометрию и автоматический выбор стенок.
ad.	Фрезерование	Фрезерование граней для обработки плоских граней
FACE_MILLING	граней	заданных границами заготовки на твердых телах.

FACE_MILLING MANUAL	Фрезерование граней	Смешанный шаблон обработки, для использования различных шаблонов обработки на каждой грани. Один из шаблонов резания является ручным, который позволяет, позиционировать инструмент точно, где необходимо подобно режиму обучения.
PLANAR_MILL	Плоское фрезерование	Основная операция плоского фрезерования, которое производит обработку по двумерным границам с различными шаблонами резания и плоскими нижними границами.
PLANAR PROFILE	Плоское фрезерование	Специальный метод резания для двухмерного профиля без задания геометрии заготовки. Это специальная операция плоского фрезерования, которая имеет доступ к подмножеству всех приложений плоского фрезерования. Применяется для обработки обрезных штампов.
ROUGH FOLLOW	Плоское фрезерование	Плоское фрезерование с методом резания вдоль детали.
ROUGH_ZIGZAG	Плоское фрезерование	Плоское фрезерование с методом резания зиг-заг.
[∎] ROUGH_ZIG	Плоское фрезерование	Плоское фрезерование с методом резания зиг по контуру
CLEANUP CORNERS	Плоское фрезерование	Плоское фрезерование с шаблоном обработки вдоль области, которая использует 2D ЗвПО из предыдущей операции. Этот тип операции часто используют, для дообработки в углах, где материал остался после обработки предыдущим инструментом.
FINISH_WALLS	Плоское фрезерование	Операция плоского фрезерования, содержащая шаблон обработки профиля, для чистовой обработки только стенок и припуском на нижней плоскости обработки. Этот тип операции не оставляет припуск на стенках, но имеет конечный припуск на нижней плоскости обработки равный 0,01 дюйма (0,25 мм), чтобы сохранить расстояние от нижней плоскости обработки.
FINISH_FLOOR	Плоское фрезерование	Операция плоского фрезерования, содержащая шаблон обработки вдоль области для чистовой обработки и только нижней плоскости обработки и оставляет припуск на стенках. Эта операция не оставляет припуска на нижней плоскости обработки, но имеет припуск 0,005 дюйма (0,12 мм) вдоль стенок. Этот припуск на обработку детали не наследуется в этой операции.
THREAD MILLING	Фрезерование резьбы	Фрезерование резьбовых отверстий с траекторией по спирали.
PLANAR_TEXT	Плоское фрезерование	Фрезерование текста надписей чертежа, используется для 2D гравировки.
MILL_CONTROL	Управление станком	Операция содержит только события управления станком.
MILL_USER	Задав.пользов.	Эта траектория инструмента сгенерирована программой пользователя при программировании в NX

4. Контурная обработка

Подтип	Процессор	Описание			
	Глубинное	Базовая	операция	глубинного	фрезерования,
CAVITY_MILL	фрезерование	используется для удаления объема материала заданного			

		как заготовка или ЗвПО и деталь, имеет много шаблонов
		плоской обработки. В основном используется для черновой обработки.
	Глубинное	Для обработки труднодоступных глубоких стенок с
PLUNGE	фрезерование	использованием длинных тонких соорок инструмента
MILLING		перемещается только вдоль оси Z.
J	Глубинное	Дообработка оставшегося материала в углах, который
CORNER ROUGH	фрезерование	не смог удалить предыдущий инструмент, из-за
	Γ	оольшого диаметра и радиуса при вершине.
REST_MILLING	1 луоинное фрезерование	удаляет оставшиися материал после предыдущего инструмента.
.J 🗆	Z-уровни	Базовая операция фрезерования по Z-уровням,
ZLEVEL PROFILE		используется для обработки детали или области резания
	Zupopuu	плоскими резами.
	2-уровни	Операция чистовой обработки углов, в которых не смог
ZLEVEL_CORNER		большого диаметра и радиуса при вершине.
SEIVED CONTOUR	Контурная	Основная операция контурной обработки с
V FIXED_CONTOUR	обработка	фиксированной ориентацией оси инструмента,
		используется для обработки геометрии детали или
		изблонами резания. Ось инструмента направлена влодь
		оси +ZM.
46	Контурная	Метод управления по области обработки, используется
CONTOUR AREA	обработка	для обработки выбранных граней или области
CONTOOR_ARLA		обработки различными шаблонами резания. Обычно
	Контурная	используется для получистовой и чистовой обработки.
CONTOUR	обработка	который использует направления U-V одиночной
SURFACE_AREA	1	управляющей поверхности или прямоугольной сетки
		поверхностей.
	Контурная	Грани резания определяются автоматически и/или
SIREAMLINE	оораоотка	задаются пользователем продольными и поперечными
1.5	Контурная	Операция похожа на операцию CONTOUR AREA.
CONTOUR_AREA	обработка	однако обрабатываются только наклонные области.
NON_STEEP		Часто используется с операцией типа
		ZLEVEL_PROFILE_STEEP, чтобы управлять высотой
νΠ	Koutypuag	Треоешка при чистовой обрасти обработки, используется
CONTOUR_AREA	обработка	лля обработки только ненаклонных областей.
_DIR_STEEP	· · F ·· · · · · · · ·	основанных на направлении резания. Используется с
		операциями CONTOUR_ZIGZAG или
		CONTOUR_AREA для уменьшения высоты гребешка
(d) Y	Koutypung	которыи остался от предыдущей операции заг-заг.
V FLOWCUT	обработка	метод управления вдоль углов за один проход,
SINGLE	oopuoonku	углов и стенок.
	Контурная	Метод управления вдоль углов за несколько проходов,
MIII TIPI F	обработка	используется для чистовой обработки или дообработки
	V or marca -	углов и стенок.
FLOWCUT REF	контурная обработка	инетод управления вдоль углов за несколько проходов в зависимости от параметров прелытущего инструмента
TOOL	002000180	используется для чистовой обработки или дообработки
		углов и стенок.

W	Контурная	Операция похожа на операцию FLOWCUT_REF_TOOL,
FLOWCUT SMOOTH	обработка	однако использует сглаженные перемещения врезаний,
_		отводов и перепозиционирования. Эта операция
		используется для высокоскоростной обработки.
	Плоское	Специальный тип резания 3D профиля, определяет
SOLID_PROFILE	фрезерование	глубину резания, выбирая вертикальные стенки.
3D		
	Плоское	Специальный метод обработки трехмерного профиля,
PROFILE_3D	фрезерование	глубина определяется ребрами или кривыми границы.
		Часто используется для обработки обрезных штампов
A CONTOUR TEXT	Контурная	Фрезерование текста надписей чертежа, используется
CONTOUR_TEXT	обработка	для 3Д гравировки.
	Зад. польз.	Эта траектория инструмента сгенерирована программой
MILL_USER		пользователя при программировании в NX
	Управление	Операция содержит только события управления
MILL_CONTROL	станком	станком.

5. Многоосевая обработка

Подтип	Процессор	Описание
VARIABLE CONTOUR	Контурная обработка	Основной тип операции с переменной ориентацией оси инструмента. Используется контур детали или область обработки с различными методами управления и шаблонами резания. Существует несколько опций для управления ориентацией оси инструмента.
STREAMLINE	Контурная обработка	Грани резания определяются автоматически и/или задаются пользователем продольными и поперечными кривыми.
VC_MULTI DEPTH	Контурная обработка	Контурная обработка с переменной ориентацией оси инструмента, с послойным удалением материала с заготовки.
VC_BOUNDARY ZZ_LEAD_LAG	Контурная обработка	Контурная обработка с переменной ориентацией оси инструмента, с методом управления по границе, шаблоном резания зиг-заг и ориентацией оси инструмента с углами опережения и наклона.
WVC_SURF_AREA ZZ_LEAD_LAG	Контурная обработка	Контурная обработка с переменной ориентацией оси инструмента, с методом управления по управляющей поверхности, шаблоном обработки зиг-заг и ориентацией оси инструмента с углами опережения и наклона.
PROFILE	Контурная обработка	Операция с переменной ориентацией оси инструмента и методом управления по контуру профиля, используется для обработки наклоненных стенок боковой поверхностью режущего инструмента. Этот тип операции отображается, если он включен соответствующей переменной для предварительного ознакомления.
FIXED CONTOUR	Контурная обработка	Основная операция контурной обработки с фиксированной ориентацией оси инструмента, используется для обработки геометрии детали или области обработки различными методами управления и шаблонами резания. Ось инструмента задается пользователем с помощью вектора.
SEQUENTIAL MILL	Последов. фрезерование	Также называется GSSM (подобна операции APT). Инструмент управляется с помощью обрабатываемой, контрольной и управляющей поверхностями.

		Используется при необходимости управления
		перемещениями инструмента, ориентацией оси
		инструмента и задания петель вдоль геометрии.
	Обработка	Это унаследованный тип операций. Не применяется для
	поверхности	новых программ.
SURFACE	Зиг-загом	
	Задав.пользов.	Эта траектория инструмента сгенерирована
MILL_USER		программой пользователя при программировании в NX
	Управление	Операция содержит только события управления
MILL_CONTROL	станком	станком.

6. Токарная обработка

Подтип	Процессор	Описание
CENTERLINE SPOTDRILL	Осевое сверление	Цикл центровки с задержкой.
CENTERLINE DRILLING	Осевое сверление	Цикл сверления с задержкой.
CENTERLINE PECKDRILL	Осевое сверление	Цикл сверления, в котором инструмент полностью выводится из отверстия после подачи на заданную глубину для удаления стружки.
CENTERLINE BREAKCHIP	Осевое сверление	Цикл сверления с ломкой стружки, в котором инструмент останавливается после подачи на заданную глубину для ломки стружки.
CENTERLINE REAMING	Осевое сверление	Цикл развертывания, в котором инструмент опускается в отверстие и выводится на рабочей подаче.
CENTERLINE TAPPING	Осевое сверление	Цикл нарезания резьбы метчиком, в котором инструмент опускается в отверстие на заданной подаче, меняет направление вращения шпинделя и выводится из отверстия на такой же подаче.
FACING	Черновая токарная обработка	Черновая токарная обработка, которая используется для обработки торца детали в направлении к оси шпинделя.
ROUGH_TURN OD	Черновая токарная обработка	Черновая токарная обработка, которая используется для обработки наружных поверхностей детали параллельно оси шпинделя.
ROUGH_BACK TURN	Черновая токарная обработка	Операция похожа на операцию ROUGH_TURN_OD, за исключением того, что обработка ведется от оси шпинделя.
ROUGH_BORE_ID	Черновая токарная обработка	Черновая обработка, которая используется для расточки отверстий и проходит параллельно к оси шпинделя.
ROUGH_BACK BORE	Черновая токарная обработка	Операция похожа на операцию ROUGH_BORE_ID, за исключением того, что обработка ведется от шпинделя.
FINISH_TURN OD	Чистовая токарная обработка	Автоматически генерирует чистовые проходы для наружной обработки детали используя различные стратегии резания.
FINISH_BORE_ID	Чистовая токарная обработка	Автоматически генерирует чистовые проходы для внутренней обработки детали используя различные стратегии резания.
FINISH_BACK BORE	Чистовая токарная обработка	Операция похожа на операцию FINISH_BORE_ID, за исключением того, что обработка ведется от шпинделя.

TEACH_MODE	Режим обучения	Генерирует чистовые проходы, которые полностью управляются пользователем (оптимальный тип операции для чистовой обработки).
GROOVE_OD	Черновая токарная обработка	Черновая обработка для обработки внешних проточек на детали (существуют несколько шаблонов резания для токарной обработки и обработки погружением).
GROOVE_ID	Черновая токарная обработка	Черновая обработка для обработки внутренних проточек на детали (существуют несколько шаблонов резания для токарной обработки и обработки погружением).
GROOVE_FACE	Черновая токарная обработка	Черновая обработка для обработки проточек на торце детали (существуют несколько шаблонов резания для токарной обработки и обработки погружением).
THREAD_OD	Нарезание резьбы	Операция нарезания наружной резьбы
THREAD_ID	Нарезание резьбы	Операция нарезания внутренней резьбы
PARTOFF	Режим обучения	Операция для отрезки (может быть использована в режиме обучения для легкого изменения параметров операции).
BAR_FEED_STOP	Управление станком	Операция управления станком (предварительно установлена) для создания постпроцессорной команды управления задней бабкой для позиционирования и остановки
LATHE CONTROL	Управление станком	Операция содержит только события управления станком.
LATHE_USER	Зад. польз.	Эта траектория инструмента сгенерирована программой пользователя при программировании в NX

Лабораторная работа №1 Фрезерование

Создание управляющей программы ЧПУ для обработки фрезерованием детали, которая впервые была загружена в модуль «Обработки» начинается с вывода на экран меню Machining Environment (Среда обработки). В этом меню необходимо выбрать Конфигурационный файл и настройки. Конфигурационный файл определяет рабочую среду модуля «Обработки». В этом файле задаются доступные процессоры обработки, библиотеки инструмента, постпроцессоры и другие высокоуровневые параметры. Настойки задаются в Файле детали, который содержит шаблоны. Они задают доступные типы опций и группы, которые появляются в «Графическом Навигаторе Операций», в меню «Создания Операций» и меню создания групп:

выберите конфигурационный файл *cam_general* и настройку *mill_planar* и нажмите клавишу "*OK*".

< 🔪 Среда обработки 🗙 >
Конфигурация сессии обработки
cam_general
cam_part_planner_library
feature_machining
hole_making hole_making_mw
Поиск файла конфигурации 🤌
Настройка обработки для создания
mill_planar
mill_contour mill_multi-axis
drill 🔤
probing
Поиск детали настройки
ОК Отмена

Создание настройки с помощью CAM EXPRESS позволяет получить:

• сборку с деталью как компонентом. Это позволяет записать данные обработки ЧПУ, отдельно от геометрических данных;

программу с именем 1234;

• магазин (карусельный или цепной) с 30 карманами для того, чтобы располагать режущий инструмент;

- начальную геометрию;
- некоторые методы обработки (черновой, чистовой, получистовой).

На фоне графического окна нажать правую клавишу мышки и выбрать *"Ориентация вида—Изометрический"*.

Задание геометрии

При задании геометрии проверяется и изменяется система координат станка (1), задается плоскость безопасности (2), задается геометрия детали (3) и задается геометрия заготовки (4).

Система координат станка (СКС) задает систему координат, в которой выводится траектории инструмента. Для этого:

• нажать Вид геометрии сеометрии

• в режиме *Bud геометрии* в *Навигаторе операций* дважды нажать на объект "MCS_MILL". Начало СКС в настоящее время позиционировано на верхней грани. Необходимо привязать СКС к геометрии детали, для этого переместить ее, например, в центр одного из отверстий;

- нажать "Задать СКС" 🔙;
- выбрать центр дуги как показано ниже.

СКС перемещается в точку центра;

• нажать "ОК".

Плоскость безопасности задает безопасное расстояние над деталью, чтобы предохранить ее от столкновения с инструментом при перемещениях без резания;

```
• в меню "Ориентация фрезеровки" (Mill Orient), опция "Автоматически" уже выбрана в списке "Опции зазоров";
```

Опции безопасности Автоматически 🔽

- ввести значение 7.0 в поле ввода "*Расстояние безопасного зазора*".
- Это будет расстоянием безопасности выше геометрии заготовки;
- нажать "*ОК*".

Задание геометрии детали в объекте WORKPIECE. Геометрия детали используется при создании операций. Для этого:

• в навигаторе операций нажать на значок "+" для открытия объекта MCS_MILL;

• дважды нажать на объект WORKPIECE для изменения группы;

- нажать "Задать деталь"
- выбрать твердое тело;
- выбрать алюминий в качестве материала заготовки;

• нажать "ОК" для доступа к меню «Геометрия детали».

Для задания геометрии заготовки (припуска) в объекте WORKPIECE как твердотельного блока, окружающего деталь необходимо:

- в меню "Геометрия фрезеровки" нажать "Задать заготовку"
- нажать Авто блок.

Это создает блок достаточный, чтобы содержать внутри всю геометрию детали;

• ввести значение 3.0 в поле ввода ZM+.

XM+0.0000 YM+0.0000 ZM+**3.0000**

Это добавляет припуск 3 мм к верхней грани блока. Инструмент переходит геометрию заготовки с зазором 7 мм при перемещениях без резания как задано минимальным расстоянием безопасности, которое было задано ранее. Альтернативный способ добавить припуск состоит в том, чтобы переместить стрелку ZM+;

- нажать "ОК" в меню "Геометрия заготовки" для создания заготовки;
- нажать "ОК" в меню "Геометрия фрезеровки" для создания заготовки.

Геометрия детали и заготовки записывается внутри объекта WORKPIECE и используется при создании операций.

Создание инструмента

Создание инструмента является последней задачей настройки. Возможно создание инструмента, как в процессе создания настройки, так и в процессе создания операций. После создания, инструменты сохраняются с деталью и доступны при необходимости в процессе создания программы обработки.

Одна из особенностей многооперационных станков – автоматическая смена инструментов. Она осуществляется с помощью устройств, передающих инструмент из магазина-накопителя в шпиндель станка. Вместимость магазина должна быть такой, чтобы комплекта загруженных в него инструментов хватало для обработки типовой детали.

Для выбора типа металлорежущего станка:

• нажать *Вид инструмента* инструм... ;

• в режиме *Вид инструмента* в *Навигаторе операций* дважды нажать на объект "GENERIC MACHINE";

- в окне выбора базового станка нажать кнопку «Вызвать станок из библиотеки»;
- в разделе фрезерование (MILL) выбрать 3-х осевой вертикально-фрезерный станок;

< 🔪 Базовый Станок 💻 🗙 🗦	
Библиотека	^
Вызвать станок из библиотеки	Dc
🛛 🗹 Вызвать информацию о кармане инструме	нта
Вызвать инструмент из библиотеки	2
Вызвать устройство из библиотеки	2
Установка инструмента	^
Изменить установку инструмента	<u>S</u>
ОК Отмена	

• в окне выбора способа крепления детали на столе станка нажать «*Создать* соединение крепления детали»;

• используя рабочую систему координат (PCK) в качестве установочной базы используем нижнюю поверхность детали;

- отметить позицию «Использовать точку крепления детали»;
- нажать "ОК".

При дальнейшем создании инструмента использовать соответствующую позицию инструмента «*POCKET*» в магазине инструментов «*SPINDLE*».

Станок может быть добавлен и после создания маршрута обработки. В этом случае вся номенклатура использованного инструмента будет перераспределена по позициям магазина автоматически.

	Крепление детали Позиционирование Ориентировать ноль ста Использовать позициони Использовать точку кре Создать соединение кр ОК	анка по главной СКС ирование сборки япления детали репления детали Отмена	
К СК СК К Тип Фивязка СК Ссылка Манипулятор Задать ориентации		2	
Z		X 0.000 2 0.000	

Инструмент для операции обработки грани может быть вызван из библиотеки. Для этого необходимо:

- нажать "Создать инструмент" и в инструментальной панели;
- нажать **Вызвать инструмент из библиотеки** [7];
- в меню "Выбор класса библиотеки", Нажать знак "+" для расширения каталога "Фрезы";
- нажать "Инструменты для фрезерования граней (со вставками)(Face Mill)";
- нажать "ОК";
- нажать "ОК" в меню "Критерии поиска";
- выбрать инструмент *ugt0212_002* в меню *"Результаты поиска"* для фрезерования граней диаметром 43 мм;

- нажать "*OK*";
- нажать "OK" в меню "Создать инструмент";
- нажать "ОК" для окончания вызова инструмента;

На этом задание настройки заканчивается. После этого производится создание программы обработки. Программа представляет собой последовательность операции, которые используются для обработки детали.

Чистовая операция обработки грани

(1-я операция в программе обработки)

Для задания типа операции и «родителей», которые содержат общую информацию и параметры для обработки грани детали необходимо:

- нажать "Создать операцию" И в инструментальной панели;
- убедится, что тип операции *Mill planar* выбран в списке *Tun;*
 - Mill_planar
- нажать FACE_MILLING_AREA 💆
- задать следующие параметры:

Программа	1234	-
Инструмент	UGT0212_001	-
Геометрия	WORKPIECE	-
Метод	MILL_FINISH	-

Операция будет помещена в программу 1234. Операция использует геометрию детали и заготовки, которые заданы в WORKPIECE и использует созданный инструмент UGT0212_001. Метод MILL_FINISH удаляет весь припуск;

• нажать "*ОК*".

Для задания области чистовой обработки необходимо:

- нажать "Задать область резания"
- выбрать верхнюю грань детали;

• нажать "*ОК*".

Для задания режимов резания необходимо:

- нажать "Подачи и скорости" 🖺:
- ввести 500 в поле ввода "Скорость резания (млм)";
- ввести **0.08** в поле ввода *Подача на зуб*.

Частота вращения шпинделя определяется на базе введенных значений;

• нажать "ОК".

Изменить шаблон резания на «Зигзаг».

Раскрыть окно «Инструмент» выбрать «Вывод» и задать «Номер инструмента» 1, что будет соответствовать позиции в инструментальном магазине. Эту операцию выполнять для всех инструментов в программе обработки.

Инструмент			•	~	
Инструмент	UGT02	12_002 (F	I	%	
Вывод				^	Ī
Номер инстр	умента		1 付		

Для генерации траектории движения инструмента необходимо:

- нажать клавишу "*Генерировать*" *Б*в нижней части меню;
- нажать кнопку "ОК" для завершения операции;

• выбрать "*Bu∂→Очистка*" для удаления отображения траектории инструмента с экрана;

• нажать Вид программ.

FACE_MILLING_AREA это первая операция в программе.

Для переименования названия программы обработки с **PROGRAM** на «1234» в окне навигатора операций выделить старое название с помощью правой клавиши мыши и выбрать «Переименовать».

Черновая обработка карманов

Для определения требуемых размеров чернового инструмента необходимо проанализировать радиусы скруглений углов кармана. Для этого на панели инструментов в окнах:

• убедится, что список (1) " Фильтр типа " установлен в значение "Грань" и список (2) "Пространство выбора" установлен в значение "В пределах рабочей детали и компонент";

выбрать угол кармана;

выбрать "Информация→Объект" в главном меню.

Например, радиус равен 5.0 мм, так что диаметр инструмента должен быть меньше чем 10 мм;

- закрыть Шинформационное окно. Для выбора инструмента черновой обработки карманов необходимо:
- нажать "Создать инструмент" инструментальной панели;
- 2 нажать *MILL*
- нажать "ОК".

Номер инструмента 2 в зависимости от заданного кармана;

ввести значение 8 в поле ввода "Диаметр" и задать при необходимости другие параметры инструмента;

- ввести имя фрезы «Freza8mm»;
- выбрать инструментальный материал;
- нажать "ОК" для окончания создания инструмента. Для создания операции черновой обработки карманов необходимо:

нажать "Создать операцию" Ітана инструментальной панели;

выбрать *CAVITY MILL*

토 в типе операции «*mill contour*». Глубинное фрезерование это типовая черновая операция, которая удаляет материал по

уровням; задать следующие параметры:

Программа	1234	-
Инструмент	Freza8mm	-
Геометрия	WORKPIECE	-
Метод	MILL_ROUGH	~

• нажать "*ОК*".

В качестве области обработки задать два кармана, для которых выполняется черновая обработка. Для этого:

• на фоне графического окна, нажать правую клавишу мышки и выбрать "Ориентация вида — Сверху";

- "увеличить" Шдеталь в области вокруг ребра;
- нажать "Задать область резания" 🕓

• нажать и перетащить по диагонали через деталь прямоугольник, который выбирает два кармана.

Только грани, которые являются полностью в пределах прямоугольника (стенки и грани пола карманов и цековки), будут выбраны;

• нажать "*ОК*".

Для задания скорость резания и подачи:

- нажать "Подачи и скорости" 🍱;
- ввести 500 в поле ввода "Скорость резания (мпм)";
- ввести 0.08 в поле ввода Подача на зуб.

Частота вращения шпинделя определяется автоматически на базе введенных значений; • Нажать "*OK*".

Для генерации траектории инструмента:

• на фоне графического окна, нажать правую клавишу мышки и выбрать "Ориентация вида—Изометрический";

• нажать "Генерировать"

Симуляция удаления материала позволяет визуализировать заготовку в процессе обработки и должна выполняться периодически в процессе разработки программы;

- нажать клавишу "Проверка" 🚺 в нижней части меню;
- выбрать закладку "2D динамически";
- нажать "Воспроизведение"

- нажать "*ОК*";
- нажать кнопку "*ОК*" для завершения операции.

CAVITY MILL - это вторая операция в программе.

Чистовая обработка дна карманов

Для создания группы геометрии, которая задает области чистовой обработки необходимо:

- нажать "Создать геометрию" 💌 в инструментальной панели;
- нажать *MILL_AREA* ¹;
- выбрать *WORKPIECE* из списка "*Геометрия*";

- нажать "*ОК*";
- нажать "Задать область резания" 🔛
- выбрать две грани, как показано ниже;

• нажать "*OK*" для выбора "*Области резания*" в меню. Далее выбрать стенки, чтобы задать припуск обработки стенок:

- нажать "Задать стенки"
- нажать "Предварительный выбор".

Грани стенки смежные с областям обработки выбираются автоматически;

- нажать "*ОК*";
- нажать "*ОК*" в меню "*Область фрезеровки*";
- нажать Вид геометрии.

Группа геометрии MILL_AREA задает два кармана в качестве области резания для черновой и чистовой обработки карманов.

Далее необходимо создать чистовую операцию обработки дна карманов, для этого:

- нажать "Создать операцию" Гв инструментальной панели;
- выбрать в окне «*Tun» «mill planar»*;

- нажать *FACE_MILLING_AREA*
- задать следующие параметры:

Программа	1234	~
Инструмент	Freza8mm	-
Геометрия	MILL_AREA	-
Метод	MILL_FINISH	-

- ввести CHIST_KARMAN в поле ввода "Имя";
- нажать "*ОК*".

Следующей задачей является создания шаблона резания, который повторяет форму кармана (в тоже время некоторый объем необработанного материала остается на стенках карманов):

• выбрать *Вдоль периферии* из списка *Шаблон резания*;

Шаблон резания 📠 Вдоль периферии 🔽

- нажать "Параметры резания" 🖾
- выбрать закладку "*Припуск*";
- ввести **1.0** в поле ввода "Припуск на стенке" (припуск под будущую чистовую обработку);
- нажать "**ОК**".

В зависимости от заданного материала детали, метода обработки и материала инструмента необходимо определить скорость резания, подачу на зуб, число оборотов шпинделя и скорость подачи:

- нажать "Подачи и скорости" 💼 и назначить режимы резания;
- нажать "**ОК**".
- Для генерации траектории инструмента необходимо:
- нажать "Генерировать"

• нажать кнопку "*ОК*" для завершения операции.

Операция FINISH_FLOOR использует информацию и параметры, заданные внутри объекта MILL_AREA.

GEOMETRY	
📑 Неиспользуемые	объекты
🖻 👯 MCS MILL	
🖻 🌍 WORKPIECE	

Чистовая операция обработки стенок

Для создания операции чистовой обработки стенки необходимо скопировать операцию чистовой обработки дна кармана:

• нажать правую клавишу мышки на операции *CHIST_KARMAN* и выбрать "Копировать";

• нажать правую клавишу мышки на объекте *CHIST_KARMAN* и выбрать "*Вставить*";

• нажать правую клавишу мышки на операции *MILL_COPY* и выбрать "*Переименовать*";

• ввести *FINISH_WALLS* и нажать клавишу *Enter*.

Эти шаги изменяют параметры так, чтобы операция использовалась для чистовой обработки стенок. Для избегания касания инструментом пола и исключения отклонения инструмента задается очень малый припуск по полу:

• в навигаторе операций дважды нажать на *FINISH_WALLS* для изменения операции;

- нажать "Параметры резания" 🖾
- выбрать закладку "*Припуск*";
- ввести **0.0** в поле ввода "*Припуск на стенке*";
- ввести **0.01** в поле ввода "*Припуск по нижней поверхности*";
- нажать "*ОК*";
- выбрать "Профиль" из списка "Шаблон резания";

- нажать *Перемещения без резания*;
- выбрать закладку *Врезание*;
- выбрать опцию *По спирали* из списка *Тип врезания в закрытую область*;
- нажать *ОК*.

Для генерации траектории инструмента необходимо:

- нажать "Генерировать" È;
- нажать кнопку "*ОК*" для завершения операции.

Подобно операции CHIST_KARMAN, операция FINISH_WALLS использует информацию и параметры, заданные внутри объекта MILL_AREA.

• Нажать Вид программ.

CHIST_KARMAN и FINISH_WALLS - третья и четвертая операции в программе.

Обработка отверстий

Обработка отверстий включает следующие операции:

- центровка;
- сверление;
- зенковка;
- развертывание;
- нарезание резьбы с помощью метчика.
 На первом этапе создадим необходимые для обработки отверстий инструменты с

помощью команды "Создать инструмент"

- центровочное сверло (spotdrilling_tool)
- сверло (drilling_tool)
- зенкер (countersinking_tool)
- развертка (reamer)
- метчик (tap)

В режиме **Вид инструмента** в **Навигаторе операций** выбрать инструментцентровочное сверло и с помощью правой клавиши мыши вставить «Операция». В

типе операции выбрать *«drill»*. В подтипе операции выбрать *«spot_drilling»* В родительской группе задать следующие параметры:

Программа	1234 🔽
Инструмент	SPOTDRILLING_TOOL
Геометрия	WORKPIECE 🔽
Метод	SPOT_DRILL_METHOE

- нажать *ОК*;
- в разделе «*геометрия*» нажать «Задайте отверстия»

• нажать кнопку «*Выберите*» и на модели детали отметить с помощью левой клавиши мыши все обрабатываемые отверстия;

• нажать *ОК*;

< 🔪 Геометрия от точки к точке 🛛 🗙 🕨	
Выберите	
Добавить	
Подавить	
Оптимизация	
Отобразить точки	
Маневрирование	
Реверс	
Управление осью дуги	
Смещение подходов	
Планирование закончено	
Отобразить/Проверить Цикл набор параметр	ов
ОК Назад Отмена	
5	
Управление маневрированием при фрезеровании	
<pre>< x ></pre>	
в From Точка - Нет	
Start Point -Her	
Return Point -HeT	
Gohome Точка - Нет	
Clearance Plane -HeT	
Lower Limit Plane -Het	
Redisplay Avoidance Geometry	
Отмена	

• в разделе «*Маневрирование*» с помощью кнопки задать точки безопасного перемещения инструмента: *From, Return, Gohome*, чтобы они совпадали и находились вне детали, см.рисунок.

• нажать *ОК*.

Для назначения режимов резания воспользуемся библиотеками UG. Информация о подачах и скоростях рассчитывается из комбинации метода резания, материала и геометрии инструмента и материала детали. Каждый из этих типов информации сохраняется в отдельной библиотеке.

• нажать в разделе «*Скорости и подачи*» кнопку

• раскрыть окно «*Больше*» и нажать кнопку *«Взять из таблицы»*. UG автоматически назначит режимы резания.

• нажать *ОК*.

Для задания глубины врезания инструмента необходимо:

- в окне «Цикл» раздела «Тип цикла» выбрать вид обработки;
- нажать 🎑
- нажать *ОК* для отображения цикла набора параметров;

• нажать кнопку «*Depth (Глубина*)» и выбрать «*Глубина по кончику* инструмента» и ввести глубину центровочного отверстия 3 мм.

- нажать "*Генерировать*" 🜌 ;
- нажать кнопку "*ОК*" для завершения операции

Последовательность шагов по созданию операции центровки может быть использована и для других операций обработки отверстий.

Отверстие в центре детали не было идентифицировано, потому что оно не моделировалось явно как элемент отверстия (оно могло быть вычтено как твердое тело). Создать операцию сверления этого отверстия необходимо вручную.

Эти шаги анализируют размер отверстия для правильного определения инструмента для обработки отверстия:

- выбрать грань цилиндра отверстия меньшего диаметра;
- выбрать "*Информация*→*Объект*" в главном меню. Цилиндр имеет диаметр 5.0 мм и является сквозным;
- Закрыть Информационное окно;

Для выбора геометрии отверстия, которое обрабатывается вручную необходимо:

- нажать "Создать геометрию" ^{III}в инструментальной панели и выбрать тип «HOLE MAKING»;
- нажать MANUAL HOLE MAKING
- выбрать *WORKPIECE* из списка "*Геометрия*";
 - Геометрия WORKPIECE
- нажать "*ОК*";
- выбрать нижнее ребро отверстия;
- ввести название геометрии *centr_otv*;
- нажать "*OK*".
 Для создания инструмента (сверло) необходимо:
- нажать "Создать инструмент" 28 в инструментальной панели;
- выбрать *HOLE_MAKING* из списка "*Tun*";
- нажать STD_DRILL
- ввести *drill-5.0* в поле ввода "Имя";
- нажать "*ОК*";
- в меню "Сверлильные инструменты" ввести 5.0 в поле ввода "Диаметр";
- ввести значение *60* в поле ввода "Длина";
- нажать "ОК" для окончания задания инструмента.
- нажать "*Создать операцию*" *Е*в инструментальной панели;
- выбрать *hole_making* из списка "*Tun*";
- нажать MANUAL HOLE MAKING
- задать следующие параметры:

	Программа	1234	▼
	Инструмент	DRILL_5.0 (Drilling Too	▼
	Геометрия	CENTR_OTV	V
	Метод	STANDARD_DRILL_ME	▼
1		STANDARD DRIL	L

- ввести *drill_hole* в поле ввода "Имя";
- нажать "*ОК*";
- ввести значение *30* в поле ввода "*Глубина*".

Для генерации траектории инструмента:

- в разделе меню "Опции" нажать "Изменить отображение"
- выбрать опцию "3-D" из списка опций "Изображение инструмента";

Отображение инструмента 3D 🔽

- нажать "*ОК*";
- нажать "Генерировать"

нажать кнопку "ОК" для завершения операции

В навигаторе операций нажать на 1234 для отображения сформированных операций.

Для симуляции обработки:

- выбрать с помощью правой клавиши мыши «*Траектория*» > «*Проверка*»;
- нажать "Проверка траектории" 🕮 в инструментальной панели;
- выбрать закладку "2D динамически";
- задать скорость анимации;
- нажать "Воспроизведение"

нажать "ОК".

Обработка текста (гравировка)

Для создания текста требуемого для операции обработки текста номера детали необходимо:

выбрать "*Вставить*→*Текст*" в панели меню;

в меню "Ввод текста" ввести "ММТС" (или любой другой текст) вместо строки "Введите текст";

- в разделе меню "*Настройки*" нажать "*Стиль*"
- ввести значение "10" в поле ввода "Размер символа";
- нажать "*ОК*";

разместить текст в необходимом месте с помощью левой клавиши мыши (установить курсор, расположенный в центре текста). Текст располагается в плоскости ХҮ РСК, параллельно оси Х (может располагаться под моделью и быть невидимым).

• нажать клавишу Закрыть.

Эти шаги создают инструмент, который будете использоваться для обработки текста:

- нажать "Создать инструмент" инструментальной панели;
- выбрать тип операции «*mill planar*»;
- нажать *MILL*
- ввести "*text mill*" в поле ввода Имя;
- нажать "*OK*";
- ввести значение **0.5** в поле ввода "Диаметр";
- ввести значение 50 в поле ввода "Длина";
- ввести значение 15 в поле ввода "Угол при вершине";
- ввести значение 10 в поле ввода "Длина режущей части";
- нажать "*ОК*" для окончания создания инструмента.

Для создания операции:

- нажать "Создать операцию" Гв инструментальной панели;
- выбрать *Machinery_Exp* из списка "*Tun*".
- нажать **PLANAR TEXT**
- задать следующие параметры:

Программа	1234	-
Инструмент	TEXT_MILL	-
Геометрия	WORKPIECE	-
Метод	MILL_FINISH	-

- ввести "*text_mill*" в поле ввода Имя;
- нажать "*ОК*".

Для выбора текста, чтобы создать траекторию инструмента необходимо:

- нажать Задать текст чертежа
- выбрать текст;

- нажать "*OK*".
 Для задания плоскости, на которую будет проецироваться текст:
- нажать Задать пол 🖾;
- выбрать верхнюю грань детали (эта грань будет обработана);

- нажать "*ОК*";
- ввести значение "*1.0*" в поле ввода "*Глубина мексма*" (глубина резания); Для генерации траектории инструмента необходимо:
- нажать "Генерировать"

нажать кнопку "**ОК**" для завершения операции. Для симуляции обработки текста необходимо:

• в навигаторе операций дважды нажать на *TEXT_MILL*;

• нажать "Проверка траектории" 🚧 в инструментальной панели;
- выбрать закладку "2D динамически";
- нажать "Воспроизведение"

• нажать "*OK*". Текст ассоциативен с операцией, т.е. существует возможность переместить или

-

-

- изменить текст, а затем перегенерировать траекторию инструмента:
- выбрать "Замечание" из списка (1) "Фильтр типа".
- выбрать текст;

• переместить текст в новое положение;

• выбрать опцию "*Нет фильтра выбора*" из списка "*Тип фильтра*";

• в навигаторе операций нажать правую клавишу мышки на объекте *TEXT_MILL* и выбрать "*Генерировать*";

• нажать клавишу **ОК** для окончания генерации траектории инструмента.

Создание управляющей программы

Эти шаги выводят программу на постпроцессор:

• в навигаторе операций выбрать программу *1234*;

• нажать *Постпроцесс* ²²в инструментальной панели.

Универсальные постпроцессоры, поставляемые с системой, отображаются в списке доступных постпроцессоров;

• в меню *Постпроцессор* выбрать *MILL_3_AXIS_TURBO* из списка "*Постпроцессор*";

• нажать "*ОК*" для вывода на постпроцессор.

Траектории инструмента выводится в выходной файл и выводится ее листинг в информационное окно.

• Закрыть Информационное окно.

UG позволяет кроме традиционной демонстрации обработки с помощью функции «*Проверка*» провести симуляцию обработки на станке. Для этого в панели навигатора операций необходимо выбрать программу обработки «*1234*» и нажать кнопку «Симуляция станка» на панели инструментов.

Лабораторная работа №2

Токарная обработка

Программа для одношпиндеольного токарного станка включает следующие операции: сверление вдоль оси, обработку наружного диаметра, обработку внутреннего диаметра, обработку проточек, обработку торцов и нарезание резьбы. При построении модели детали в качестве оси детали как тела вращения выбрать ось X - рабочей системы координат.

Настройка

Настройка задает условия и параметры и включает: анализ детали; выбор настройки; задание геометрии; задание зон контроля столкновений; создание инструментов.

Если в процессе моделирования было создано твердое тело, необходимо построить его сечение, например с помощью операции «*Кривая сечения*».

Для построения простого сечения используется одна секущая плоскость. Результирующие линии пересечения будут лежать в секущей плоскости. Эта опция требует указать объемные тела и секущую плоскость.

При выборе опции Simple Section становятся активными клавиши Body (Teno) и Section Plane (Секущая Плоскость) секции Definition Steps. Во-первых, укажите все тела, которые нужно рассечь. Во-вторых, укажите секущую плоскость. По умолчанию будет принята координатная плоскость XM-YM системы координат станка (опция MCS XY-Plane). Опция Specify Plane (Задать Плоскость) позволяет указать произвольную плоскость с помощью функции Plane Subfunction (Функция Выбора Плоскости). После выбора секущей плоскости, нажмите ОК, и система создаст набор линий, которые можно будет использовать для построения временных или постоянных границ.

Анализ детали позволяет получить информацию относительно габаритов детали и единиц измерения, в которых деталь была создана. Например, для измерения длины детали необходимо:

- выбрать "Настройки"→"Визуализация";
- выбрать закладку "Визуализация";

если необходимо, включить опцию "Прозрачность";

Прозрачность

• нажать "*ОК*".

Это необходимо для того, чтобы иметь возможность видеть деталь через геометрию заготовки;

- выбрать "Анализ"→"Измерение расстояния" в главном меню;
- выбрать переднюю и заднюю грани детали и измерить ее длину.

Выбор настройки. Настройка задает навигатор операций и структуру сборки.

• нажать *Вид геометрии*;

• нажать значок "+" для раскрытия групп;

Настройка задает иерархию объектов геометрии и позволяет задать дополнительную геометрию и параметры операций в программе;

- нажать Вид инструмента;
- нажать значок "+" для раскрытия групп.

На рисунке представлено меню для CAM EXPRESS – в нем отражаются позиции револьверного магазина. Для общей настройки видны только две первые позиции меню. Револьверный магазин, несколько позиций и общие токарные инструменты были заданы настройкой. Это создает базу, которая позволяет задать необходимые дополнительные инструменты.

Задание геометрии позволяет проверить системы координат (1), задать геометрию заготовки (2) и задать геометрию детали (3).

Рабочая система координат (РСК) используется для ввода координат (значений X,Y,Z). Она должна быть ориентирована в плоскости, в которой перемещается токарный резец.

На фоне графического окна, необходимо нажать правую клавишу мышки и выбрать *Ориентация вида*—*Сверху* (или любое другое, в зависимости системы координат при моделировании например, *Справа*);

"Уменьшите" 🖾 деталь.

Начало РСК должно быть совмещено с осью вращения. На этом виде, ось ХС должна быть направлена вправо, и ось ҮС должна быть направлена вверх.

Система координат станка (СКС) задает систему координат, в которой находится траектория инструмента. СКС задает нулевую точку программы и должна ориентироваться в плоскости, в которой перемещается режущий инструмент. Ось ZM должна совпадать с осью вращения детали, по оси XM задается поперечная подача инструмента.

Для задания системы координат станка (СКС) необходимо:

- нажать Вид геометрии;
- в навигаторе операций нажать правую клавишу мышки на объекте *MCS_SPINDLE* и выбрать "Объект"→"Отобразить";

• в главном меню, выбрать *"Формат"*→ *"Отобразить СКС*" для удаления отображения текущей СКС;

• дважды нажать на объект *MCS SPINDLE*;

в меню "*MCS_Spindle*", убедится, что опция "*ZM-XM*" выбрана из списка меню "*Задать плоскость*". Это плоскость, в которой инструмент будет перемещаться;

Задание плоскости ZM-XM 🔽

- нажать "*OK*" для принятия "*MCS_Spindle*" в меню. Для задания геометрии детали необходимо:
- в *навигаторе операций* дважды нажать на *TURNING_WORKPIECE* для изменения объекта;

Геоме	стрия	
···· 🖬	Неиспользуемые объекты	
. <mark>Б</mark> .		
×	MCS_SPINDLE	
	🧐 WORKPIECE	
	🖻 🕥 TURNING WORKPII	ECE 🚄—
<u> </u>		
Задать	араметры	
	< 🗙 Turn Bnd 📃 🗙 📐	
	Геометрия	
	Задайте границы детали	
a	Sadarre i parindoi de la ini	
-0_		
	Задаите границы заготовки	
HS_	Описание	•
		-
	Материал:	<u>S</u>
20		1
	компоновка и слои	V
the for		0
19	OK	Отмена

• нажать "Задать границы детали" детали;

и выбрать линии контура сечения

• нажать *Материал: CARBON STEEL* Выбрать *МАТО_00266* из списка "*Материал детали*". Это задает алюминий в качестве материала детали;

нажать "*OK*".
 Для задания геометрии заготовки необходимо:

- в меню "Turn Bnd", нажать "Задать границы заготовки"
- выбрать «цилиндрическая заготовка»;

Выберите заготовку		
	< 🔪 Выберите заготовку 🗙 >	_
₿ <u>-</u>	🖸 💿 ⊳ 📚	
8	Позиция установки	
	Выберите Отобразить	
	Расположение точки	
	💿 В патроне	
1	🔵 В задней бабке	
	Длина 0.0000)
	Диаметр 0.0000)
13	Внутренний диаметр 0.0000	
	Отобразить заготовку	J
	ОК Назад Отмена	

• задать длину и диаметр заготовки;

• нажать «Выберите» в меню «Позиция установки» для задания положения опорной точки заготовки в патроне шпинделя станка. Выберите левый торец детали;

• нажать "*ОК*".

На экране при этом отображаются контуры детали и заготовки.

Деталь и геометрия заготовки записаны в WORKPIECE, габаритные размеры детали и заготовки записываются внутри TURNING_WORKPIECE.

Выбрать "*Bud*" — "*Обновить*" в главном меню для удаления отображения границ. На фоне графического окна, нажать правую клавишу мышки и выбрать "*Стиль закраски*" — "*Статический каркасный*". Отображаемые кривые будут полезны как визуальная ссылка, при разработке операции и генерации траектории инструмента.

Выбрать "*Формат*"→"*РСК*"→"*Отобразить*" в главном меню для удаления отображения РСК с экрана.

Задание зон контроля столкновений позволяет режущему инструменту избегать объектов при использовании осевой плоскости безопасности (1), начальной точки и точки возврата (2), и плоскости безопасности (3).

Для задания плоскости ограничения, которая предотвращает столкновения инструмента с кулачковым патроном следует:

• нажать "Создать геометрию" 💽 в инструментальной панели.

Для задания начальной точки и точки возврата, которые используются при позиционировании инструмента необходимо:

• в окне *Тип* выбрать операцию *Точение (turning);*

• в подтипе геометрии, выбрать "*Маневрирование*" (AVOIDANCE) для изменения объекта;

Выберите тип, подтип, расположение и задайте имя геометрии		
	< 🌂 Создание геометрии 🗙 >	
-	Тип	
	turning	
-0-	Подтип геометрии	
	🎼 ፍ 💿 💿 🖶	
	Положение	
	Геометрия MCS_SPINDLE 🔽	
	Имя	
13	AVOIDANCE	
	ОК Применить Отмена	

- в разделе «Положение» в окне «Геометрия» выбрать TURNING_WORKPIECE
- нажать "*ОК*".

В разделе "Перемещение в начальную точку (ST)" меню "Маневрирования", выбрать опцию "По прямой" из списка "Тип перемещения";

Тип перемещения 🖾 По прямой 🔽

Задать параметры		
	< 🔪 Маневрирование 💳 🗙 >	
B_	Усл. обозначение 🔨 🔨	•
<u></u>	GH+ +FR	
a	RT	
	DPn *	
	DP1+ C + APn	
1		
~	Точка From (FR) 🗸 🗸 🗸	
	Перемещение в начальную точку (ST)	
13	Тип перемещения	
	Подход (АР)	
O	Перемещение в начало врезания	
	Тип перемещения 📝 По прямой 🔽	
	Отвод (DP) V	
	Перемещение в точку возврата / Зазор (RT) 🔥	
	Тип перемещения 🔗 Нет 🔽	
	Перемещение в точку Gohome (GH) 🗸 🗸	
	Радиальная плоскость безопасности 🔍 🗸	
× •	Просмотр	
2	🗹 Просмотр Отобразить 📎	
	ОК Отмена	

• нажать "*Задать точку*" , указать приблизительную точку на экране, как показано ниже;

нажать "*ОК*"; •

в разделе "Перемещение в точку возврата / Плоскость безопасности (RT)", выберите опцию "По прямой" из списка "Тип перемещения";

Тип перемещения 🏒 По прямой 🔽

в разделе "Перемещение в точку возврата / Плоскость безопасности (RT)" выберите опцию "Так же как в начале" из списка "Опции точки".

Опции точки Так же как в начале 🔽

Для задания плоскости безопасности, которая предотвращает столкновение режущего инструмента с обрабатываемой деталью необходимо:

открыть раздел "*Радиальная плоскость безопасности*" в меню выбрать опцию "*Точка*" из списка "*Опции осевых пределов*";

Опции осевых пределов Точка 🔽

нажать "*Задать точку*" , ввести значения координат X,Y,Z как показано ниже;

> X13.00000 Y0.000000 Z0.000000

нажать "*ОК*";

в меню "*Маневрирование*" нажать "*ОК*".

В дальнейшем при создании операций эти ограничения на траекторию движения инструмента будут задаваться в окне определяющем перемещения без резания.

Для задания плоскости ограничения, которая предотвращает столкновения инструмента с кулачковым патроном следует:

- нажать "Создать геометрию" 🔍 в инструментальной панели;
- в окне *Тип* выбрать операцию *Точение (turning);*
- нажать "*Ограничения*"(CONTAINMENT)

убедится, что AVOIDANCE (Маневрирование) выбран в списке "Геометрия".

Геометрия Маневрирование

Параметры геометрии маневрирования, детали и заготовки в объекте WORKPIECE наследуются в ограничения на операцию;

• нажать *ОК*;

в разделе "Осевая плоскость обрезки 1" в меню "Ограничения" выбрать "Расстояние" из списка "Опции пределов".

Опции пределов Расстояние

• ввести значение "-125" (с учетом длины детали) в поле ввода "Осевая ZM/XM"; нажать "Отобразить"

• нажать "*ОК*".

Объект «Ограничения» создается в навигаторе операции.

Создание инструмента является последней задачей настройки. Он может создаваться в процессе создания настройки или в процессе создания операций. После создания, инструменты сохраняются с деталью и доступны, при необходимости в процессе создания программы обработки. Первый инструмент для обработки отверстия – центровка:

- нажать "Создать инструмент" 22 в инструментальной панели;
- выбрать обработку *Точение (turning)* из списка «*Tun*»;
- нажать *SPOTDRILL*
- выбрать *GENERIC_MACHINE* из списка "Инструменты";
- нажать "*ОК*";
- задать необходимые параметры инструмента;
- нажать "ОК" для окончания задания инструмента;

• нажать Вид инструмента.

SPOTDRILL располагается внутри GENERIC_MACHINE.

Второй инструмент – сверло:

- нажать "*Создать инструмент*" ²в инструментальной панели;
- нажать "DRILLING TOOL"

• нажать "*ОК*";

• ввести значение необходимого диаметра сверла с учетом последующей обработки растачиванием в поле ввода "*Диаметр*";

• нажать "*ОК*" для окончания задания инструмента.

Для создания запроса из библиотеки резцов для черновой и чистовой обработки наружного диаметра и торца заготовки необходимо:

- нажать "Создать инструмент" 2 в инструментальной панели;
- нажать "Вызвать инструмент из библиотеки"

• в меню "Выбор класса библиотеки", нажмите знак "+" для расширения каталога "Резцы";

- нажать "Наружный профиль" (OD turning);
- нажать "*ОК*";
- ввести значение 0.4 в поле ввода "*Paduyc*";
- нажать "Кол-во найденных"

Отображается несколько инструментов с радиусом 0.4 мм;

• нажать "*ОК*";

• в меню "*Результаты поиска*" выбрать инструмент с именем *ugt0101_003* из списка "*Библиотечные ссылки*";

- нажать "*OK*" для подтверждения выбранного инструмента;
- нажать "Отмена" для выхода из меню "Создание инструмента".

Возможно создание и других инструментов в процессе создания операций. На этом задание настройки заканчивается.

После выбора конкретного инструмента иногда важно включить отображения державки инструмента. Например, при обработке отверстий расточным резцом важно, чтобы держатель помещался в растачиваемом отверстии. Важно при этом и положение державки. Для этого в окне параметров инструмента выбрать «Держатель» и отметить «Использовать держатель инструмента».

Программа обработки

Программа задает последовательность операций для получения готовой детали.

FACING
 CENTERLINE_SPOTDRILL
 CENTERLINE_DRILLING
 ROUGH_TURN_OD
 GROOVE_OD
 FINISH_TURN_OD
 ROUGH_BORE_ID

8. Sector Finish_Bore_ID 9. Sector GROOVE_ID 10. Sector Finish_Bore_ID_1

Для задания типа операции и родителей, которые содержат общую информацию и параметры для обработки **торца заготовки** (FACING) необходимо:

- нажать "Создать операцию" 🕼;
- убедится, что "*Turning_Exp*" выбран в списке "*Tun*";

Turning_Exp	~
-------------	---

- нажать FACING
- задать следующие параметры:

< 🔪 Создание опер	аций 🗙 ≥		
Тип	^		
turning			
Подтип операции	^		
	, Ru 📥 📴		
🔛 🗷 😏			
🖕 🔁 🕈			
	· 🔫 🛄 🕖		
Положение	^		
Программа			
Инструмент	OD_55_L (Turning Toc		
Геометрия			
Метод			
Имя	^		
torec	torec		
ОК Применить Отмена			

Эта операция будет использовать геометрию детали и заготовки, которые заданы в WORKPIECE и параметры, которые заданы в объекте *TURNING_WORKPIECE*. Эта операция будет использовать инструмент OD_55_L, заданный настройкой. Метод "LATHE_FINISH" удаляет весь припуск;

• нажать "*ОК*".

Для задания плоскости обрезки, которая ограничивает область обработки в конце детали необходимо:

• в разделе меню "*Геометрия*", нажать клавишу "*Изменить*" *Ш*, которая расположена за клавишей "*Области резания*";

• в разделе "*Осевая плоскость обрезки 1*" меню "Ограничения" выбрать "*Точка*" из списка "*Опции пределов*";

Опции пределов Точка 🔽

• выбрать конец кривой;

• нажать "*ОК*" для принятия "*Области резания*" в меню.

Для задания перемещений, предотвращающих столкновения инструмента с деталью необходимо:

- нажать "Перемещения без резания"
- выбрать закладку "*Подход*" и задать точку *From*;

• выбрать закладку "*Omxod*" и задать перемещения в точку *Gohome* с типом перемещения «*Oceвая-paduaльная*» и точкой расположенной на оси вращения детали.

Для задания режимов резания в окне «Настройка пути» необходимо нажать

скорости и подачи кнопку единиц измерения. UG позволяет автоматически назначить режимы обработки с учетом обрабатываемого и инструментального материалов с помощью Автоматические настройки Взять из таблицы

кнопки

Для генерации траектории инструмента (обработка торца) необходимо:

• нажать "Генерировать"

- нажать кнопку "ОК" для завершения операции;
- нажать *Bud программ* и откройте программу *PROGRAM* и переименуйте ее на *1234*.

FACING это первая операция в программе.

Для задания типа операции и родителей, содержащих общую информацию и параметры операции **центровки** необходимо:

- нажать "Создать операцию" 🎼;
- нажать "*CENTERLINE_SPOTDRILL*" ⁻
- задать следующие параметры:

Положение	^
Программа	PROGRAM
Инструмент	SPOTDRILLING_TOOL
Геометрия	
Метод	
Имя	^
centrovka	

• нажать "*ОК*".

Для генерации траектории инструмента (центровки) необходимо:

• открыть раздел "Опции" в меню

- нажать "Изменить отображение"
- из списка "Показать инструмент", выбрать "2D";
 Отображение инструмента 2D
- нажать "*ОК*";
- нажать "Генерировать" 🚈;

• нажать кнопку "*ОК*" для завершения операции центрового сверления.

Для создания операции сверления необходимо:

• нажать "Создать операцию"

- нажать "CENTERLINE_DRILLING"
- задать следующие параметры;

Положение	^
Программа	1234
Инструмент	DRILLING_TOOL (Drilli 🔽
Геометрия	
Метод	

• нажать "*ОК*";

• в разделе меню "Начальная точка и глубина", выбрать опцию "Глубина плеча" из списка "Опции глубины" список;

Опция "Глубина"	Глубина плеча	~
-----------------	---------------	---

- ввести значение "110" в поле ввода "Расстояние".
 Для генерации траектории инструмента (центровки) необходимо:
- открыть раздел "Опции" в меню ____;
- нажать "Изменить отображение"
- из списка "Показать инструмент", выбрать "2D";
 - Отображение инструмента 2D
- нажать "*ОК*";
- нажать "Генерировать"

• нажать кнопку "ОК" для завершения операции осевого сверления.

1234
FACING
CENTERLINE_SPOTDRILL
CENTERLINE_DRILLING

Для создания операции черновой обработки наружного диаметра необходимо:

- нажать "Создать операцию" 🕼;
- нажать ROUGH TURN OD 5;

• задать следующие параметры:

Программа	1234
Инструмент	OD_55_L (Turning Toc 🔽
Геометрия	
Метод	LATHE_ROUGH

- нажать "*ОК*";
- выбрать изменить Области резания.

Операция использует аксиальную плоскость безопасности, заданную в объекте "Ограничения", чтобы ограничить область резания.

Для генерации траектории инструмента необходимо:

• нажать "Генерировать"

• "Увеличьте" Коласть проточки и обратить внимание, как инструмент погружается в проточку. Программа пытается обработать проточку непреспособленным для этого инструментом. Обработка проточки будет отдельной операцией.

Это может быть исправлено, подавляя Режим возврата. Этот режим не позволяет инструменту погружаться в области малых диаметров на детали;

• из списка опций "Режим возврата", выбрать опцию "Подавить";

Режим возврата Подавить 🔽

• нажать "Генерировать"

- нажать кнопку "ОК" для завершения операции.
 - 1234
 FACING
 CENTERLINE_SPOTDRILL
 CENTERLINE_DRILLING
 ROUGH_TURN_OD

Далее необходимо создать инструмент для **обработки проточки** на наружном диаметре:

- нажать "Создать инструмент" и в инструментальной панели;
- нажать "OD GROOVE L" -
- нажать "*OK*" для окончания задания инструмента.
 Для создания операции обработки проточки необходимо:
- нажать "Создать операцию"
 - нажать "GROOVE OD"
- задать следующие параметры:

Положение	^
Программа	1234
Инструмент	OD_GROOVE_L (Groo
Геометрия	
Метод	LATHE_GROOVE

- нажать "*ОК*";
- из списка "Глубина резания" выбрать опцию "Постоянная".

Глубина резания Постоянный 🔽

Для задания двух плоскостей обрезки ограничивающих область резания внутри проточки необходимо:

• в разделе меню "*Геометрия*" нажать клавишу "*Изменить*" *2* расположена за клавишей "*Области резания*";

• в разделе меню "Осевая плоскость обрезки 1" выбрать "Точка" из списка "Опции задания точки";

которая

Опции задания точки Задать 🔽

• нажать "Задать точку" 🔙;

• выбрать вершину вертикальной прямой на левой части проточки как показано ниже;

• нажать "*ОК*";

• в разделе меню " Осевая плоскость обрезки 2", выберите "Точка" из списка "Опции задания точки";

Опции задания точки Задать 🔽

• нажать "Задать точку" 🔙;

• выбрать верхнюю вертикальную линию на правой стороне проточки, как показано ниже;

- нажать "*ОК*";
- нажать "*ОК*" для принятия "*Области резания*" в меню.

Для генерации траектории движения инструмента необходимо нажать

"*Генерировать*" . Как видно из рисунка инструмент сталкивается с деталью при выходе из проточки. Это может быть исправлено изменением траектории перемещения в точку возврата.

Для задания перемещение в точку возврата, которое предотвращает столкновения с деталью необходимо:

- нажать "Перемещения без резания" 🖾
- выбрать закладку "*Отход*";

• в меню "Перемещение в точку возврата / Плоскость безопасности" выбрать опцию "Радиальная – Осевая" из списка "Тип перемещения";

Тип перемещения 🛄 Радиально—По оси 🔽

- нажать "ОК" для принятия "Перемещений без резания" в меню;
- нажать "Генерировать" 🌌

- нажать кнопку "ОК" для завершения операции обработки проточки.
 - 1234 ■ 1234 ■ 1234 ■ 1234 ■ 1234 ■ 1234 ■ FACING ■ 1234 ■ CENTERLINE_SPOTDRILL ■ 1234 ■ CENTERLINE_DRILLING ■ 1234 ■ CENTERLINE_DRILLING

Для создания операции чистовой обработки наружного диаметра необходимо:

- нажать "Создать операцию" 🎼;
- нажать *FINISH_TURN_OD*
- задать следующие параметры:

Положение	^
Программа	1234
Инструмент	OD_55_L (Turning Toc
Геометрия	
Метод	

• нажать "*ОК*";

Далее необходимо задать точки обрезки, ограничивающие область резания к контуру наружного диаметра:

• в разделе меню "*Геометрия*" нажать клавишу "*Изменить*" *Ш*, которая расположена за клавишей "*Области резания*";

• в разделе меню "Точка обрезки 1" выбрать "Точка" из списка "Опции задания точки";

Опции задания точки Задать 🔽

- нажать "Задать точку" 🔙;
- выбрать конец вертикальной линии, как показано ниже;

- нажать "*ОК*";
- в разделе меню "Точка обрезки 2" выбрать "Точка" из списка "Опции задания точки";

Опции задания точки Задать 🔽

- нажать "Задать точку" 🔙;
- выбрать конец вертикальной линии, как показано ниже;

- нажать "*ОК*";
- в меню выбрать опцию "Одно направление" из списка "Последовательность области";

Последовательность обработки областей Одно направление 🔽

- нажать "*OK*" для окончания создания области резания. Для изменения границы детали необходимо:
- в разделе меню "Геометрия" нажать клавишу "Изменить", которая

расположена за клавишей Истройка данных границы детали";

- нажать Игнорировать элементы;
- выбрать элемент границы, который задает правую сторону проточки;

• включить флажок "Игнорировать элемент" (проточка является технологическим элементом детали и не требует чистовой обработки);

Игнорировать элемент

• выбрать элемент границы, который задает дно проточки и включить флажок "Игнорировать элемент";

- нажать "*ОК*";
- нажать "*OK*" в меню "*Граница детали*". Для генерации траектории движения инструмента необходимо:
- нажать "Генерировать"

В случае выдачи ошибки связанной с функцией «Параметры резания» необходимо скорректировать форму траектории движения инструмента в углах. Для этого в окнах «Нормальные углы» и «Поверхностные углы» выбрать «Расширить».

🔪 Параметры резания 💻 🗙 🔰	
Форма траектории в углах Расширить Нормальные углы Расширить Поверхностные углы Скругл. Радиус 0.2500 Поверхностный минимальный угол 120.0000	
	ОК Отмена

• нажать кнопку "*ОК*" для завершения чистовой операции.

Для создания инструмента **черновой расточки внутреннего** диаметра детали необходимо:

- нажать "Создать инструмент" и в инструментальной панели;
- нажать "*ID 55 L*"
- нажать "*ОК*";
- ввести значение "0.4" в поле ввода "*Радиус при вершине*";
- ввести "5" в поле ввода "Длина" для задания длины режущей кромки;
- выбрать закладку "Держатель";

• ввести значения конструктивных параметров инструмента обеспечивающих расположение его в обрабатываемом отверстии:

Размеры	^
(L) Длина	150.0000
(W) Ширина	15.0000
(SW) Ширина держателя	20.0000
(SL) Ось держателя	20.0000
(НА) Угол держателя	0.0000

• нажать "*OK*" для окончания задания инструмента. Для задания геометрии детали необходимо:

• в *навигаторе операций* нажать на *TURNING_WORKPIECE* правой клавишей мыши для добавления новой геометрии *TURNING_WORKPIECE 1*;

<	>		_
🛱 Навиг	атор операций - Геоме	трия	
Имя		Траекти	
GEOMETRY			
📑 Неис	пользуемые объекты		
🗄 🥰 MCS	_SPINDLE		
ė. 🌍 V	VORKPIECE		
	🔊 🍌 Изменить		
	🦆 Резания		
	👆 Копировать		
	🏷 Удалить		
	🔛 Переимен.		
	🗦 Генерировать		
	🗟 👡 Воспроизвести		
	💐 Постпроцесс		
	Вставить	👍 Операция	
	Объект	 Пруппа программ Инструмент 	
	Траектория	🗊 Геометрия	
	Donan (Baron	🔤 Метод	

- задать новый контур детали (линии расточки отверстия).
 Для создания операции черновой расточки детали необходимо:
- нажать "Создать операцию"

- нажать " ROUGH_BORE_ID "
- задать следующие параметры:

Положение	•
Программа	1234
Инструмент	ID_55_L (Turning Tool
Геометрия	
Метод	LATHE_FINISH TURNING_WORKPIECE_1

• нажать "*ОК*".

Для задания плоскости обрезки, которая ограничивает область обработки в конце расточки необходимо:

• в разделе меню "*Геометрия*", нажать клавишу "*Изменить*" *С*, которая расположена за клавишей "*Области резания*";

• в разделе "Осевая плоскость обрезки 1" выбрать "Точка" из списка "Опции пределов";

- выбрать конец прямой правой стороны проточки.
- нажать клавишу отобразить и оценить обрабатываемую геометрию.

• в случае необходимости ввести дополнительные плоскости обрезки (например, радиальную).

Для генерации траектории движения инструмента необходимо:

- нажать "Генерировать"
- нажать кнопку "*ОК*" для завершения операции.

Для создания операции чистовой расточки внутреннего диаметра необходимо:

- нажать "Создать операцию"
- нажать "*FINISH_BORE_ID*" и задать «родителей» и область резания использованных для черновой расточки;
 - нажать "*OK*". Для генерации траектории движения инструмента необходимо:
 - нажать "Генерировать"

• нажать кнопку "ОК" для завершения операции

Процесс создания операции расточки внутренней проточки начинается с задания стандартного канавочного резца:

- нажать "*Создать инструмент*" ²в инструментальной панели;
- нажать "*ID GROOVE L*"

- нажать "*ОК*";
- выбрать закладку "Дополнительно";
- включить опцию "Использование держателя инструмента;
- в окне «*Стиль*» задать 90 градусов;

• изменить конструктивные параметры резца с учетом диаметра обрабатываемого отверстия;

- нажать кнопку «Инструмент» и изменить параметры режущей пластины;
- нажать "*ОК*";
- нажать "*ОК*" для окончания задания инструмента.

Следующим этапом является добавление геометрии проточки в существующую геометрию *TURNING WORKPIECE:*

• В навигаторе операций выбрать *TURNING_WORKPIECE* и вставить *«Геометрия...»*;

< 🔪 Создание геометрии 🗙 >
Тип
(turning 🔽
Подтип геометрии
🎼 🕞 🔞 🕼 🖶 🤡
Положение
Геометрия TURNING_WORKPIEC
Имя
TURNING_WORKPIECE_2
ОК Применить Отмена

• нажать "Задать границы детали"

• для удаления существующей геометрии детали для наружной обработки нажать «Удалить»;

- нажать «Добавить»;
- выбрать «Тип фильтра» «Граница по кривым» и отметить линии проточки;

Тип ф	ильтра	1
	<u>-</u> ++	
кам	Граница по	кривым

• нажать "*ОК*".

🔪 Границы детали 🗙 ≽
Плоскость
Овручную Автоматически
Тип
Эакрыт. 💽 Открыть
Сторона матер.
💽 Слева 🔅 Справа
Задание параметров границы
Смещение 0.0000
Восстановить все смещения элемента в
Тип Общий 🔽 💽
Применить
Удалить Добавить
Изменить Информация
Выберите все заново
Просмотр
ОК Назад Отмена

- Нажать "Создать операцию"
- нажать "*GROOVE ID*"
- задать следующие параметры:

Программа	1234	~
Инструмент	ID_GROOVE_L	-
Геометрия	TURNING_WORKPIECE_2	-
Метод	LATHE_GROOVE	-

• нажать "*ОК*".

Эти шаги задают четыре точки, ограничивающие область резания внутри проточки:

• в разделе меню "*Геометрия*" нажать клавишу "*Изменить*" расположенную за клавишей "*Области резания*";

• в разделах меню "Осевая плоскость обрезки 1", Осевая плоскость обрезки 2", Радиальная плоскость обрезки 1 и 2" выбрать "Точка" из списка "Опции задания точки";

Опции задания точки Задать 🔽

• последовательно задать четыре точки, как показано на рисунке с помощью функции "Задать точку" .

• нажать "*ОК*";

• нажать "*ОК*" для окончания создания области резания.

Для задания перемещений, предотвращающих столкновения инструмента с деталью необходимо:

- нажать "Перемещения без резания"
- выбрать закладку "*Подход"*;

• в меню "Перемещение в точку возврата / Плоскость безопасности" выбрать опцию "Радиальная – Осевая" из списка "Тип перемещения";

Тип перемещения Г. Радиально→По оси 🔽

• в меню "Перемещение в начало врезания" выбрать опцию "Радиальная→Осевая" из списка "Тип перемещения";

Тип перемещения Г. Радиально→По оси 🔽

• выбрать закладку "**Отвод**".

• в меню "Перемещение в точку возврата / Плоскость безопасности" выбрать опцию "Радиальная – Осевая" из списка "Тип перемещения";

Тип перемещения Г. Радиально→По оси 🔽

• из списка "Опции точки" выбрать опцию "Точка";

Опции задания точки Точка 🔽

• указать приблизительную точку на экране, как показано ниже.

- нажать "*OK*" для принятия "Перемещений без резания" в меню. Для генерации траектории инструмента необходимо:
- нажать "Генерировать"
- нажать кнопку "ОК" для завершения операции обработки проточки.

Рассмотрим процесс нарезания резьбы на наружной поверхности заготовки. Процесс создания операции начинается с задания стандартного резьбового резца OD_THREAD.

- нажать "Создать инструмент" и в инструментальной панели;
- нажать " *OD_THREAD* "
- нажать "*ОК*";
- задать необходимые параметры инструмента;
- нажать "ОК" для окончания задания инструмента.

В качестве геометрии использовать параметры детали и заготовки записанные в *TURNING WORKPIECE*;

< 🌂 Создание инструмента 🗙 >
Тип
turning
Библиотека
Вызвать инструмент из библиотеки
Подтип инструмента
Ø 🖏 🗖 🗖 🖗
💁 🏊 🛃 🖜 🖿
📕 🖢 👼 🤹 🛁
Инструмент GENERIC_MACHINE
Имя
OD_THREAD_L
ОК Применить Отмена

Следующим этапом является создание операции нарезания резьбы. Для этого выбрать «*Вид инструмента*».

-12	Навигатор операций -	Станок							
Им	1		Траекти						
GEN	ERIC_MACHINE								
	🔋 Неиспользуемые объект	ты							
	🛃 OD_THREAD_L								
ė.	J OD_55_L	🍢 Изн	енить						
	🛄 🦞 🎇 FINISH_TURN_OD	🦻 💎 Рез-	ания						
		🍢 Коп	ировать						
		🍢 Уда	алить						
		🔛 Пер	еимен.						
		J Ген	ерировать						
		En Boci	произвести						
		lan e							
		Noc	тпроцесс						
		Вст	авить 💦 🕨	🍺 Or	перация				
		061	ьект 🕨	🍋 Гр	уппа программ.				
				🎦 Ин	кструмент				
3 E	авигаторе операци	йвр	резьбовой	резец	вставить	опер	рацию	нареза	ния
ой р	езьбы								

< 🍾 Создание операций 🗙 >	
Тип	•
turning	
Подтип операции	^
ුං දිං මුං මුං ╪ 🖗	
🖂 🔁 💆 🔄 🔁	
🔄 👱 🐔 📲 🖡	
- 🔜 🛒 👎 🖿 🌮	
Положение	•
Программа NC_PROGRAM	
Инструмент OD_THREAD_L (Thre	
Геометрия TURNING_WORKPIE	c 🔽
Метод LATHE_THREAD	
Имя	•
THREAD_OD	
ОК Применить Отмен	a

В родительской группе задать следующие параметры инструмента, геометрии и метода обработки.

В параметрах операции «*Наружная резьба»*, в разделе «Форма резьбы» необходимо выбрать начало резьбы «*Select crest line*», конец резьбы «*Select end line*» и главную (базовую) линию.

Форма резьбы	
* Select Crest Line (0)	↔
* Select End Line (0)	
Опция глубины Основная линия	i 🔽 🗏
* Выберите главную линию (0)	•

При выборе главной линии на модели детали, конец линии ближайший к точке выбора является начальной точкой. Противоположный конец становится конечной точкой. В качестве конечной линии выбираем примыкающую линию прямоугольной канавки.

Элементы резьбы, где

АШаг ВГлубина Сбазовая линия DОсновная линия

В окне «Опция глубины» выбираем «Глубина и угол» позволяющую задать высоту профиля резьбы. Величина угла равняется 180 град.

В окне «Глубина» зададим величину, определяющую число проходов.

С помощью функции «Параметры резания» зададим шаг резьбы и другие ее параметры.

С помощью функции «Перемещения без резания» зададим точку «Подхода» резца «From» и точку «Omxoda» резца «Gohome».

Для задания точек «недобега» и «перебега» инструмента необходимо:

- в разделе «Смещение» задать «Смещение в начале» равное 10 мм (недобег) и «Смещение в конце» равное 5 мм (перебег).
 - Задать режимы резания. Для генерации траектории инструмента необходимо:
 - нажать "Генерировать" Ш.
 Это последняя операция обработки детали в программе обработки.

Для вывода на постпроцессор операции должны содержать сгенерированные траектории инструмента и каждая операция должна отображаться с символом состояния или **ч**. Существует три состояния операции:

- «Требует перегенерации» () траектория инструмента не была сгенерирована для этой операции или что параметры операции были изменены и траектория инструмента должна быть перегенерирована, чтобы отразить изменения;
- «Требуется вывод» (?) траектория инструмента для операции была сгенерирована, но не была обработана постпроцессором или не экспортировалось из файла детали;
- «Закончена» (**v**) траектория инструмента сгенерирована и выведена на постпроцессор или выведена в текстовый файл в операционную систему.

Необходимо нажать **Вид программ**. Каждая операция в программе отображается в состоянии "Требуется вывод на постпроцессор" (¹/₂).

в *навигаторе операций* выбрать программу 1234.

• нажать "Постпроцесс" В инструментальной панели.

Универсальные постпроцессоры поставляемые с системой отображаются в списке доступных постпроцессоров;

• в меню "Постпроцессор" выбрать "LATHE 2 AXIS TURRET REF" из списка "Постпроцессоров";

• нажать "ОК" для вывода на постпроцессор.

Траектории инструмента могут быть выведены в виде выходного файла и листинга в информационное окно;

• закрыть Информационное окно.

Задания на проектирование фрезерной и токарной обработки в UG NX6

No	Параметры модели						
вар-та	Α	В	С	D	Е	F	
1	M90	40	65	140	90	140	
2	M100	45	70	150	100	150	
3	M110	50	75	160	110	160	
4	M120	55	80	170	120	170	
5	M90	45	70	140	90	140	
6	M100	45	70	150	100	145	
7	M110	55	80	165	115	160	
8	M120	50	85	170	115	170	
9	M95	45	60	130	80	145	
10	M105	50	75	150	100	150	
11	M110	50	75	160	110	150	
12	M125	60	85	175	125	175	
13	M90	40	70	145	95	140	
14	M100	50	70	150	90	140	
15	M115	50	75	160	110	160	