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1. INTRODUCTION

Let M = (xij) be a square matrix of n2 commuting variables X = {xij | i, j = 1, . . . , n}. Consider

its powers M s = (f (s)
ij (X)), where f

(s)
ij (X) are homogeneous polynomials in X of multiple degree s. In

the algebra of commutative polynomials A = k[X] over a field k, we define the homogeneous ideals

F (s) = (f (s)
ij (X) | i, j = 1, . . . , n), F (0) = A,

and denote by B(s) the Z-graded quotient algebra A/F (s).

Lemma 1. For t > s, there exists the following embedding of ideals: F (t)
� F (s).

Proof. Note that the entries of the matrix M s lie in F (s); therefore, M s = 0 in B(s). If t ≥ s, then
M t = M s · M t−s = 0 · M t−s = 0 in B(s); therefore, the entries of M t and the ideal F (t) generated by
them lie in F (s). In the case of the strict inequality, F (s) contains sth power entries of not appearing
in F (t).

This lemma motivates the main definition of the paper, which follows.

Definition. The chain of ideals

· · · ⊂ F (s+1) ⊂ F (s) ⊂ · · · ⊂ F (1) ⊂ F (0) = A

is called a matrix nilpotent filter on the algebra A = k[X].

Let us study the combinatorial properties of the entries of the filter and its successive quotients,
including the algebras B(s). To this end, we shall use the Gröbner bases for ideals (see [1, 2.1–
2.7, 3.3]; [2, Chap. 2]).

To describe the nilpotent filter, let us define the following auxiliary ideals of the algebra A:

G(s) = (g(s−n+1)(X), . . . , g(s−1)(X), g(s)(X)),
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ON A MATRIX NILPOTENT FILTER 177

where s ≥ n− 1, and the g(r)(X) are homogeneous polynomials in X of multiple degree r which are the
operator invariants of the matrix M and are defined for r ≥ 0 by the expansion

∑

r≥0

g(r)(X) · θr := (det(E − M · θ))−1;

note that g(0)(X) = 1 and G(n−1) = A.

The polynomials g(r)(X) were studied in [3], where they were denoted by Kr+n−1. We were not able
to find out whether ideals similar to G(s) have been studied earlier.

In the following section, we shall try to find the properties of the ideals constructed in the most general
case. For example, it will be shown in Lemma 3 that, for large s, G(s) specifies, on the algebra A, a
filtration interlaced with the nilpotent filter (F (s)).

The last section is devoted small dimensions n = 1, 2, . . . , and most statements there are of technical
nature. The description of the Hilbert series of subfactors of the filtration constructed in Theorem 9
and the calculation of the Hilbert polynomial of the algebra B(s) in Lemma 11 are the concluding
combinatorial results in this paper.

Structural algebraic and algebro-geometric questions merit a study in a separate paper, just as the
study of similar problems in the noncommutative case; here these questions are not considered.

2. GENERAL RESULTS

Let us prove some general properties of the ideals constructed above.

Lemma 2. The following embeddings of the ideals of the algebra A exist:

1) F (t+s) ⊆ F (t) · F (s) and, in particular, F (s) ⊆ (F (1))s;

2) det M · F (s) ⊆ F (s+1).

Proof. We have M t+s = M t ·M s; therefore, the entries of M t+s are expressed via the pairwise products
of the entries of M t and M s, which gives the first assertion.

The matrix M is the root of the characteristic polynomial χM (θ) = det(M − θ · En); let us write out
the equality χM(M) · M s = 0:

(−1)nMn+s + (−1)n−1 tr M · Mn−1+s + · · · + detM · M s = 0.

The matrix entries of the first n summands on the left-hand side lie in F (s+1); hence the entries of
det M · M (s) also belong to F (s+1), which proves the second assertion.

Lemma 3. For s ≥ n − 1, the following embeddings of ideals exist:

1) det M · G(s) ⊆ G(s+n);

2) F (s) ⊆ G(s);

3) if t ≥ s, then G(t) ⊆ G(s).

Proof. 1) Take the coefficients of θs+n in the equality

det(E − M · θ) ·
∑

s≥0

g(s)(X) · θs = 1.

For s ≥ n − 1, they are of the form defining the recurrence relation on (g(s)(X)):

g(s+n)(X) − tr M · g(s+n−1)(X) + · · · + (−1)n det M · g(s)(X) = 0. (2.1)
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By definition, the first n summands on the left-hand side lie in G(s+n); hence the last summand
det(M) · g(s)(X) also belongs to G(s+n).

2) Consider the equalities

∑

s≥0

M s · θs = (En − M · θ)−1 =
1

det(E − M · θ)
· (Ẽn − M · θ)�

=
(∑

t≥0

g(t)(X) · θt

)
· (Ẽn − M · θ)�. (2.2)

Here (Ẽn − M · θ) denotes the matrix adjoint to (En −M · θ) and consisting of (n− 1)× (n− 1) minors
that are polynomials in θ (just as in X) of degree at most n− 1. Therefore, our assertion follows from the
relations:

f
(s)
ij (X) =

((∑

t≥0

g(t)(X) · θt

)
· (Ẽn − M · θ)ji

)

θs

∈ (g(s−(n−1))(X), . . . , g(s)(X)) = G(s).

3) The recurrence relation (2.1) implies the inclusion g(s+n)(X) ∈ G(s+n−1), while, by definition, the
following embedding holds:

{
g(s+n−1)(X), g(s+n−2)(X), . . . , g(s+1)(X)

}
⊂ G(s+n−1).

Therefore, for s ≥ 0, we have G(s+n) ⊂ G(s+n−1), and we obtain the second homogeneous filtration
on A:

· · · ⊂ G(t+1) ⊂ G(t) ⊂ · · · ⊂ G(n) ⊂ G(n−1) = A, t > n

3. SMALL DIMENSIONS

More concrete statements on the filtrations constructed above can be proved for the small dimensions
n = 1, 2.

The case n = 1 is obvious: F (s) = G(s) = (xs), B(s) = k[x]/(xs) = 〈1, x, . . . , xs−1〉k, while the
Z-graded A-module F (s)/F (s+1) is isomorphic to 〈xs〉k.

The case n = 2, which is studied in the remaining part of the paper is more complex. Let us adopt the
more convenient notation:

M =

⎛

⎝x y

z v

⎞

⎠ ,
∑

s≥0

g(s)(X) · θs = (1 − (x + v) · θ + (x · v − y · z) · θ2)−1.

For s ≥ 1, the ideals G(s) = (g(s−1)(X), g(s)(X)) were defined in the algebra A = k[x, y, z, v].

Lemma 4. In the case under consideration, the following formulas are valid:

1) g(s)(X) =
s∑

t=�s/2�
Cs−t

t · (− det M)s−t(tr M)2t−s;

2) F (s) =
(
g(s)(X) − g(s−1)(X) · v, g(s−1)(X) · y, g(s−1)(X) · z, g(s)(X) − g(s−1)(X) · x

)
;

3) M s+1 = g(s)(X) · M − g(s−1)(X) · det M · E2.
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Proof. Writing out the definition of (g(s)(X), s ≥ 0) for n = 2, we obtain
∑

s≥0

g(s)(X) · θs = (1 − θ(trM − det M · θ))−1 =
∑

t≥0

θt(tr M − detM · θ)t

=
∑

t≥0

θt
t∑

u=0

Cu
t (− det M)u(tr M)t−uθu =

∑

t≥0

t∑

u=0

θt+uCu
t (− det M)u(tr M)t−u

=
∑

s≥0

θs
s∑

t=0

Cs−t
t (− det M)s−t(tr M)2t−s.

Combining this relation with the equality Cs−t
t = 0 for 2t < s, we obtain the first formula.

In connection with the case under consideration, let us return to relation (2.2):

∑

s≥0

M s · θs =
(∑

t≥0

g(t)(X) · θt

)
· (Ẽ2 − M · θ)�

=
(∑

t≥0

g(t)(X) · θt

)
·

⎛

⎝1 − v · θ y · θ

z · θ 1 − x · θ

⎞

⎠ .

Equating the coefficients of θs for s > 0, we find that

M s =

⎛

⎝g(s)(X) − g(s−1)(X) · v g(s−1)(X) · y

g(s−1)(X) · z g(s)(X) − g(s−1)(X) · x

⎞

⎠

= g(s)(X) · E2 − g(s−1)(X) · M̃�.

Now the second formula follows from the first equality, while the third formula is obtained by multiplying
the previous equalities by M .

Examples. Formula 1) from Lemma 4 implies the following equalities:

• g(0)(X) = 1;

• g(1)(X) = tr M = x + v;

• g(2)(X) = − detM + (tr M)2 = x2 + xv + v2 + yz;

• g(3)(X) = −2 detM · tr M + (tr M)3 = (x + v)(x2 + v2 + 2yz).

Corollary 5. For s > 0, item 2) of Lemma 4 implies

1) {g(s−1)(X) · y, g(s−1)(X) · z, g(s−1)(X) · (x − v)} ⊂ F (s);

2) g(s−1)(X) · v ≡ g(s−1)(X) · x ≡ g(s)(X) (mod F (s));

3) G(s)/F (s) = A · g(s−1)(X).

Lemma 6. For s > 0, t ≥ 0, the following congruences hold:

1) g(t+s−1)(X) ≡ xt · g(s−1)(X) (mod F (s));

2) g(2s−1)(X) ≡ 0 (mod F (s));

3) xs · g(s−1)(X) ≡ 0 (mod F (s)).
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Proof. Let u ≥ s > 0; then

g(u)(X) − x · g(u−1)(X) ∈ F (u) ⊂ F (s);

therefore,

g(u)(X) ≡ x · g(u−1)(X) (modF (s)),

and the first congruence follows from the equality

g(t+s−1)(X) − xt · g(s−1)(X) =
t−1∑

i=0

xi · (g(t+s−i−1)(X) − x · g(t+s−i−2)(X)) ∈ F (s).

The entries of the matrix M s lie in F (s); therefore, tr M s ∈ F (s). Let us express the matrix M2s = (M s)2

in terms of the polynomials g(u)(X):
⎛

⎜⎝
(g(s))2 − 2g(s)g(s−1)v + (g(s−1))2(v2 + yz) tr M s · g(s−1)y

tr M s · g(s−1)z t(g(s))2 − 2g(s)g(s−1)x + t(g(s−1))2(x2 + yz)

⎞

⎟⎠ .

Therefore, the following relation holds in A:

tr M s · g(s−1)(X) · y = g(2s−1)(X) · y,

which implies the second congruence

g(2s−1)(X) = tr M s · g(s−1)(X) ∈ F (s).

The third congruence is a consequence of the previous two congruences:

xs · g(s−1)(X) ≡ g(2s−1)(X) ≡ 0 (mod F (s)).

Theorem 7. The A-module G(s)/F (s), regarded as a Z-graded space, is isomorphic to

〈g(s−1)(X), x · g(s−1)(X), . . . , xs−1 · g(s−1)(X)〉k .

Proof. By items 1) and 2) of Lemma 6, for P (x, y, z, v) ∈ k[x, y, z, v] we have

P (x, y, z, v) · g(s−1)(X) ≡ P (x, 0, 0, x) · g(s−1)(X) (mod F (s)).

Taking into account item 3) of Corollary 5 and item 3) of Lemma 6, we obtain

G(s)/F (s) = {P (x) · g(s−1)(X), deg P (x) < s}.

Thus, to prove the theorem, it remains to show that xs−1 · g(s−1)(X) /∈ F (s) or, from congruence 1) of
Lemma 6, g(2s−2)(X) /∈ F (s).

Define the ideal

J = (z) � A = k[x, y, z, v] : A/J ∼= k[x, y, v].

If a ∈ A, then a = a + J from A/J can be regarded as an element k[x, y, v] if z = 0 is substituted.
Let us prove that

g(2s−2)(X) + J = g(2s−2)(X) 
⊂ F (s) + J = F (s),

which implies the required. We have

M =

⎛

⎝x y

0 v

⎞

⎠ =

⎛

⎜⎝

1
x − v

−y

0 x − v

⎞

⎟⎠

⎛

⎝x 0

0 v

⎞

⎠

⎛

⎜⎝
x − v y

0
1

x − v

⎞

⎟⎠ .
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Therefore,
⎛

⎝x y

0 v

⎞

⎠
s

=

⎛

⎜⎝

1
x − v

−y

0 x − v

⎞

⎟⎠

⎛

⎝xs 0

0 vs

⎞

⎠

⎛

⎜⎝
x − v y

0
1

x − v

⎞

⎟⎠ =

⎛

⎜⎝
xs y · xs − vs

x − v

0 vs

⎞

⎟⎠ .

These equalities determine f
(s)
ij (X):

f
(s)
11 (X) = xs, f

(s)
22 (X) = vs, f

(s)
12 (X) = y · xs − vs

x − v
.

Let us fix the order y > x > v and let us prove that the collection

{f (s)
11 (X), f

(s)
22 (X), f

(s)
12 (X)}

is a Gröbner basis (see [1, item 2, pp. 35–37], [2, Chap. 2, p. 105 (Russian transl.)]) for the ideal

F (s) � k[x, y, v] : f
(s)
12 (X) = y(xs−1 + vxs−2 + · · · + vs−2x + vs−1)

= xs−1y + vxs−2y + · · · + vs−2xy + vs−1y.

The leading monomial f
(s)
12 (X) is xs−1y and, for s ≥ 2, has the unique link x · xs−1y = xs · y with xs,

the leading (and unique) monomial f
(s)
11 (X). Hence we obtain just one composition; let us carry out its

reduction:

x · f (s)
12 (X) − f

(s)
11 (X) · y = xy

xs − vs

x − v
− xsy = y

xs+1 − vsx − xs+1 + vxs

x − v

= vxy
xs−1 − vs−1

x − v
= vxy · (xs−2 + vxs−3 + · · · + vs−3x + vs−2)

= vxs−1y + v2xs−2y + · · · + vs−2x2y + vs−1xy
f12−−→ vxy

xs−1 − vs−1

x − v
− v · yxs − vs

x − v

=
vy

x − v
(xs − vs−1x − xs + vs) =

vsy · (v − x)
x − v

= −vs · y f22−−→ 0.

Thus, the unique composition of the collection

{f (s)
11 (X), f

(s)
22 (X), f

(s)
12 (X)}

reduces to zero, and this set is a reduced set closed under composition, i.e., it is a Gröbner basis for the
ideal F (s). Strictly speaking, this argument was adjusted to the case s ≥ 4, but it is easy to verify that,
for s = 2 or 3, the result obeys the same formula.

For s = 1, there are no links between the leading monomials, and hence there are no compositions as
well; therefore, the set in question is also a Gröbner basis.

The elements g(s)(X) are given by the relation

∑

s≥0

g(s)(X) · θs =
1

det(E2 − M · θ)
=

1
(1 − xθ)(1 − vθ)

=
1

x − v

(
x

1 − xθ
− v

1 − vθ

)
.

Hence we obtain the expressions g(s)(X) = (xs+1 − vs+1)/(x − v) and the reduction of g(2s−2)(X) to
the normal form with respect to the Gröbner basis:

g(2s−2)(X) =
x2s−1 − v2s−1

x − v

= x2s−2 + vx2s−3 + · · · + vs−1xs−1 + · · · + v2s−3x + v2s−2 f11,22−−−→ vs−1xs−1 
= 0.
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This argument is justified for s ≥ 3; for s = 2,

g(2s−2)(X) = x2 + vx + v2 → vx 
= 0;

for s = 1,

g(2s−2)(X) = 1 
= 0.

Thus, always g(2s−2)(X) /∈ F (s), and Theorem 7 is proved.

Theorem 8. For s ≥ 1, the sequence of Z-graded A-modules is exact:

0 → A[−2s + 1] θ−→ A[−s] ⊕ A[−s + 1]
ϕ−→ A → A/G(s) → 0,

where

θ(a) = (a · g(s−1)(X), a · g(s)(X)), ϕ((a′, a′′)) = a′ · g(s)(X) − a′′ · g(s−1)(X).

Proof. Obviously, ϕ ◦ θ = 0, and we need only to prove that ker ϕ = Im θ. Let (a′, a′′) ∈ ker ϕ satisfy

a′ · g(s)(X) − a′′ · g(s−1)(X) = 0.

Then a′ · g(s)(X) is divisible by g(s−1)(X). Turning to the recurrence relation (2.1) for s ≥ 2, we obtain

g(s)(X) − tr M · g(s−1)(X) + det M · g(s−2)(X) = 0.

We find that a′ · detM · g(s−2)(X) is divisible by g(s−1)(X). Turning to the same recurrence relation (2.1)
for s ≥ 3, we obtain

g(s−1)(X) − tr M · g(s−2)(X) + det M · g(s−3)(X) = 0.

We find that a′ · (det M)2 · g(s−3)(X) is divisible by g(s−1)(X). Similarly, by induction on s, we can show
that

a′ · (det M)s−1 · g(0)(X) = a′ · (det M)s−1 ... g(s−1)(X).

By item 1) of Lemma 4 for s ≥ 2, we have the equality

g(s−1)(X) =
s−1∑

t=�(s−1)/2�
Cs−1−t

t · (− det M)s−1−t(tr M)2t−s+1

= (tr M)s−1 − detM

s−2∑

t=�(s−1)/2�
Cs−1−t

t · (− detM)s−2−t(tr M)2t−s+1.

The polynomial tr M is irreducible in A = k[x, y, z, v], and detM /∈ (tr M); hence detM and tr M are
coprime. Therefore, detM has no common factors with (tr M)s−1 and g(s−1)(X), while g(s−1)(X)
has no common factors with (det M)s−1. This implies that a′ is divisible by g(s−1)(X), i.e., we have
a′ = a · g(s−1)(X).

Then

a′′ · g(s−1)(X) = a′ · g(s)(X) = a · g(s−1)(X) · g(s)(X)

and a′′ = a · g(s)(X). Thus, we obtain the inclusion proving Theorem 8:

(a′, a′′) = (a · g(s−1)(X), a · g(s)(X)) = θ(a) ∈ Im θ.

Definition (see [1, item 3, pp. 47–50], [2, Chap.. 9, item 3, p. 574 (Russian transl.)])). If V ∼=
⊕

m≥0 Vm

is a graded space over a field k, then its Hilbert function hV is specified by the values hV (m) = dimk Vm,
and the Hilbert series

∑
m≥0 dimk Vm · tm is denoted by V (t).
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If there exists a polynomial whose values coincide with hV (m) for sufficiently large m, then it is
denoted by PV (m) and is called the Hilbert polynomial of the space V .

Theorem 9. For s ≥ 1, the following equalities hold:

1) A/G(s)(t) =
(1 − ts)(1 − ts−1)

(1 − t)4
;

2) G(s)/F (s)(t) =
ts−1(1 − ts)

(1 − t)
;

3) B(s)(t) =
(1 − ts−1)(1 − ts)

(1 − t)4
+

ts−1(1 − ts)
1 − t

;

4) G(s)/G(s+1)(t) =
(1 − ts)(ts−1 + ts)

(1 − t)3
;

5) F (s)/F (s+1)(t) =
(1 − ts)(ts−1 + ts)

(1 − t)3
+ t2s + t2s−1 − ts−1.

Proof. 1) Since A(t) = (1 − t)−4, Theorem 8 implies the equalities

A/G(s)(t) = A(t) · (1 − (ts + ts−1) + t2s−1) =
(1 − ts)(1 − ts−1)

(1 − t)4
.

2) Theorem 7 implies

G(s)/F (s)(t) = ts−1 + ts + · · · + t2s−2 =
ts−1(1 − ts)

(1 − t)
.

3) From 1) and 2), we obtain the equalities

B(s)(t) = A/F (s)(t) = A/G(s)(t) + G(s)/F (s)(t) =
(1 − ts)(1 − ts−1)

(1 − t)4
+

ts−1(1 − ts)
1 − t

.

4) It follows from 1) that

G(s)/G(s+1)(t) = A/G(s+1)(t) − A/G(s)(t) =
(1 − ts+1)(1 − ts)

(1 − t)4
− (1 − ts)(1 − ts−1)

(1 − t)4

=
(1 − ts)(ts−1 − ts+1)

(1 − t)4
=

(1 − ts)(ts−1 + ts)
(1 − t)3

.

5) From 3) and 4), we obtain the final equalities of Theorem 9:

F (s)/F (s+1)(t) = B(s+1)(t) − B(s)(t)

= G(s)/G(s+1)(t) + G(s+1)/F (s+1)(t) − G(s)/F (s)(t)

=
(1 − ts)(ts−1 + ts)

(1 − t)3
+

ts(1 − ts+1)
1 − t

− ts−1(1 − ts)
1 − t

=
(1 − ts)(ts−1 + ts)

(1 − t)3
− ts−1 + t2s−1 + t2s.
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Remark 10. The following two (bi)graded spaces are associated with the filtrations (G(s), s ≥ 1)
and (F (s), s ≥ 0) on A:

AG :=
⊕

s≥1

G(s)/G(s+1), AF :=
⊕

s≥0

F (s)/F (s+1).

It is easy to find that their Hilbert series are

AG(t, z) :=
∑

s≥1

G(s)/G(s+1)(t) · zs =
(1 + t)z

(1 − t)2(1 − tz)(1 − t2z)
,

AF (t, z) :=
∑

s≥0

F (s)/F (s+1)(t) · zs =
(1 + t)z

(1 − t)2(1 − tz)(1 − t2z)
+

1 − z

(1 − tz)(1 − t2z)
.

Lemma 11. The algebras B(s) = A/F (s) and A/G(s) possess identical Hilbert polynomials

PB(s)(m) = s(s − 1)m − s(s − 1)(2s − 5)
2

.

Proof. By items 2) and 3) of Theorem 9, the Hilbert functions of these algebras coincide for m ≥ 2s− 1;
therefore, their Hilbert polynomials are equal. Item 1) of Theorems 9, implies the equalities

A/G(s)(t) =
(1 − ts)(1 − ts−1)

(1 − t)4
= (1 − ts−1 − ts + t2s−1) ·

∑

m≥0

Cm
−4(−t)m

=
∑

m≥0

(−1)mCm
−4(t

m − tm+s−1 − tm+s + tm+2s−1)

= (a polynomial of degree 2s − 2)

+
∑

m≥2s−1

tm · ((−1)mCm
−4 − (−1)m−s+1Cm−s+1

−4 − (−1)m−sCm−s
−4 )

+
∑

m≥2s−1

tm · (−1)m−2s+1Cm−2s+1
−4 ,

here

Ck
−4 = (−4)(−5) · · · (−4 − k + 1)

1
k!

= (−1)kC3
k+3 = (−1)k

(k + 3)(k + 2)(k + 1)
6

.

Therefore, for m ≥ 2s − 1, we obtain the following equalities proving Lemma 11:

hB(s)(m) = C3
m+3 − C3

m−s+4 − C3
m−s+3 + C3

m−2s+4

=
(m + 3)(m + 2)(m + 1)

6
− (m − s + 4)(m − s + 3)(m − s + 2)

6

− (m − s + 3)(m − s + 2)(m − s + 1)
6

+
(m − 2s + 4)(m − 2s + 3)(m − 2s + 2)

6

= s(s − 1)m − s(s − 1)(2s − 5)
2

.

Corollary 12. Similarly, it can be proved that the graded A-modules G(s)/G(s+1) and F (s)/F (s+1)

have identical Hilbert polynomials

P (m) = 2sm − s(3s − 4).
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