Белан Елена Павловна

ЗАПАСЁННАЯ ЭНЕРГИЯ И ТЕПЛОПРОВОДНОСТЬ ГРАФИТА ГР-280, ОБЛУЧЁННОГО ДО ВЫСОКИХ ФЛЮЕНСОВ НЕЙТРОНОВ

01.04.07 -физика конденсированного состояния

Автореферат

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена на кафедре радиационных технологий ФГБОУ ВО «Ульяновский государственный университет» Министерства образования и науки Российской Федерации и в лаборатории исследований топливных материалов и элементов перспективных реакторов отделения реакторного материаловедения Акционерного общества «Государственный научный центр — Научно-исследовательский институт атомных реакторов» (АО «ГНЦ НИИАР»)

Научный руководитель: Покровский Александр Сергеевич

кандидат физико-математических наук

Официальные оппоненты: Чернов Иван Ильич

доктор физико-математических наук, профессор, Национальный исследовательский ядерный университет «Московский инженерно-физический институт», кафедра физических проблем

материаловедения, профессор кафедры Шаманин Игорь Владимирович

доктор физико-математических профессор, наук, ΦΓΑΟΥ «Национальный исследовательский BO Томский политехнический университет», научная лаборатория технологий изотопного анализа инженерной ядерных технологий, школы

заведующий лабораторией

Ведущая организация: Федеральное государственное бюджетное

учреждение «Национальный исследовательский

центр «Курчатовский институт»

Защита диссертации состоится «16» февраля 2018 г. в 12 час. 00 мин. на заседании диссертационного совета Д 212.278.01 при ФГБОУ ВО «Ульяновский государственный университет» по адресу: г. Ульяновск, ул. Набережная реки Свияги, д. 106, к. 1, ауд. 703.

С диссертацией и авторефератом диссертации можно ознакомиться в научной библиотеке Ульяновского государственного университета и на сайте BУЗа http://www.ulsu.ru, а так же с авторефератом можно ознакомиться на сайте Высшей аттестационной комиссии при Министерстве образования и науки $P\Phi$ – http://vak.ed.gov.ru.

Автореферат разослан «___» _____ 2017 г.

Отзывы на автореферат просим высылать по адресу: 432017, г. Ульяновск, ул. Л. Толстого, д. 42, УлГУ, Отдел подготовки кадров высшей квалификации.

Ученый секретарь диссертационного совета, к.ф-м.н.

Вострецова Л.Н.

Общая характеристика работы

Актуальность

Графит ГР-280 используется в реакторах большой мощности канального типа (РБМК) в качестве материала кладки, которая выполняет функцию основного конструкционного элемента активной зоны, замедлителя и отражателя нейтронов.

К настоящему времени кладка большинства реакторов РБМК выработала тридцатилетний pecypc. Однако проведённых назначенный результаты исследований указали потенциальную возможность дальнейшей эксплуатации. В связи с этим концерн «Росэнергоатом» в рамках общей целевой программы Минатома РФ по обоснованию предельно достижимого срока службы графитовых кладок реакторов РБМК поставил задачу расчёта напряженнодеформированного состояния блоков графита ГР-280, облучённого до предельного флюенса нейтронов около 3.10^{26} м⁻² (здесь и далее для E > 0.18 МэВ) в рабочем интервале температуры кладки 450 ÷ 650 °C [1].

При расчёте напряженно-деформированного состояния кладки одним из основных параметров, определяющих как радиационные, так и термические напряжения, возникающие в графитовых блоках при их эксплуатации, является теплопроводность графита. Теплопроводность графита ГР-280, облучённого при 450 ÷ 650 °C до флюенса нейтронов порядка 10^{26} м⁻², изучена сравнительно слабо. Из-за сложности высокотемпературных измерений коэффициент теплопроводности определяли в основном при комнатной температуре, данные для рабочих условий графитовой кладки и нештатных ситуаций, сопровождающихся перегревом активной зоны, получали, как правило, методом экстраполяции, что снижает их достоверность.

При нештатных перегревах активной зоны, а также при выборе оптимальных способов и методов обращения с накопленными радиоактивными отходами, среди которых отработанный графит занимает одно из основных мест, немаловажную роль играет уровень запасённой энергии в графитовой кладке.

Вопрос накопления запасённой энергии в графитовых элементах активной зоны уран-графитовых реакторов и характеристик её выхода в последнее время широко обсуждается в печати [2, 3, 4, 5, 6].

Большинство имеющихся в настоящий момент экспериментальных данных по запасённой энергии в графите относятся к температурам облучения, не превышающим $150 \div 200$ °C, и флюенсу нейтронов не более $2 \cdot 10^{25}$ м⁻². В ряде обзорных работ [4, 5, 6] были предприняты попытки спрогнозировать уровень запасённой энергии в графите, облучённом при высоких температурах, и сделан

вывод, что для однозначного решения проблемы необходимы дополнительные экспериментальные исследования.

Таким образом, исследования теплопроводности графита ГР-280, облучённого при $450 \div 650$ °C до флюенса нейтронов порядка 10^{26} м⁻², и запасённой в нём энергии являются актуальными.

Цели и задачи

Целью работы является определение запасённой энергии в графитовых элементах кладки реактора РБМК и их теплопроводности в области высокой температуры измерения, соответствующей условиям нормальной эксплуатации кладки реактора и нештатных ситуаций, связанных с перегревом активной зоны.

Для достижения поставленной цели необходимо было решить **следующие задачи**.

- 1. Получить экспериментальные данные по общей запасённой энергии и скорости её выхода при отжиге графита, облучённого при $450 \div 650$ °C до флюенса нейтронов $3,2\cdot10^{26}$ м⁻², в интервале от температуры облучения ($T_{\text{обл}}$) до 1300 °C.
- 2. Выполнить кинетический анализ спектра запасённой энергии графита, облучённого при 450 °C до флюенса нейтронов $3,2\cdot10^{26}$ м⁻², в интервале от $T_{\rm обл}$ до 1300 °C, определить энергии активации и тип радиационных дефектов в данном графите.
- 3. Получить экспериментальные данные по коэффициенту теплопроводности графита, облученного при $450 \div 650$ °C до флюенса $3,2\cdot10^{26}$ м⁻², в интервале температуры $20 \div 1200$ °C, построить аналитическую зависимость коэффициента теплопроводности от температуры облучения и флюенса нейтронов в области высоких флюенсов нейтронов.
- 4. Провести высокотемпературный отжиг графита, облученного при 450 \div 650 °C до флюенса нейтронов 1,5·10²⁶ м⁻², и выполнить оценку его влияния на теплопроводность данного графита.

Научная новизна

- 1. Получены новые экспериментальные данные по уровню накопления и скорости выхода запасённой энергии из графита, облучённого при $450 \div 640$ °C до флюенса нейтронов $3,2\cdot10^{26}$ м⁻², в интервале от температуры облучения до 1300 °C.
- 2. Определены энергии активации и тип радиационных дефектов в графите, облучённом при 450 °C до флюенса нейтронов $3,2\cdot10^{26}$ м $^{-2}$.
- 3. Впервые получены экспериментальные данные по коэффициенту теплопроводности графита ГР-280, облучённого при $450 \div 640$ °C до флюенса нейтронов $3,2\cdot10^{26}$ м⁻², в интервале температуры измерения $25 \div 1200$ °C и построена аналитическая зависимость коэффициента теплопроводности графита

ГР-280 от температуры облучения и флюенса нейтронов в области критических ¹ и закритических флюенсов нейтронов в диапазоне температуры облучения 450 ÷ 800 °C, учитывающая образование микротрещин в графите вследствие облучения.

4. Выявлено влияние высокотемпературного отжига на коэффициент теплопроводности графита ГР-280, облучённого при $450 \div 640$ °C до флюенса нейтронов $1,5\cdot10^{26}$ м⁻².

Теоретическая и практическая значимость работы

- 1. Экспериментальные данные по теплопроводности графита ГР-280, облучённого до высокого флюенса нейтронов при 450 ÷ 650 °C, в области высоких температур измерения, а также по выходу запасённой энергии значительно расширяют существующую базу данных по радиационной стойкости реакторного графита.
- 2. Использование экспериментальных значений теплопроводности графита ГР-280, облучённого до высокого флюенса нейтронов при температуре 450 ÷ 650 °C, при высоких температурах измерения, а также зависимости коэффициента теплопроводности графита ГР-280 от температуры облучения и флюенса нейтронов позволяет увеличить точность расчетов напряженно-деформированного состояния кладок реакторов РБМК в условиях повышенных рабочих температур, имеющих место при длительных сроках эксплуатации, и в нештатных ситуациях, сопровождающихся перегревом активной зоны.
- 3. Данные по выходу запасённой энергии из графита, облучённого до высокого флюенса нейтронов при температуре 450 ÷ 650 °C, могут быть использованы при прогнозировании поведения и лицензировании графитовых элементов активных зон действующих и разрабатываемых высокотемпературных газовых реакторов.
- 4. Спектр запасённой энергии графита, облучённого до высокого флюенса нейтронов, и рассчитанные по нему энергии активации процессов отжига вносят существенный вклад в развитие теоретических моделей радиационного дефектообразования в реакторном графите.

Достоверность результатов

Достоверность полученных результатов обоснована применением аттестованных методик измерения, материаловедческих исследовательских установок, воспроизводимостью экспериментальных данных и согласованностью результатов с опубликованными литературными данными.

¹ Флюенс нейтронов, при котором графит после стадии усадки возвращается к исходным размерам, затем наступает стадия распухания

Основные положения, выносимые на защиту

- 1. Нагревание графита ГР-280, облучённого при температуре $450 \div 640$ °C, от $T_{\rm oбn}$ до 1300 °C приводит к выделению до 200 Дж/г запасённой энергии. Максимальная скорость выхода запасённой энергии наблюдается при температуре послерадиационного отжига 1100 °C.
- 2. В графите, облучённом при температуре 450 °C до флюенса нейтронов $3.2\cdot10^{26}~\text{M}^{-2}$, в интервале от $T_{\text{обл}}$ до 1300 °C происходит отжиг радиационных дефектов с энергиями активации $1.95 \div 4.03$ эВ, которые соответствуют энергиям миграции моно- и дивакансий и эволюции кластерной структуры.
- 3. Аналитическая зависимость коэффициента теплопроводности от параметров облучения, полученная из корреляции теплопроводности и вторичного распухания графита под действием облучения, позволяет рассчитывать теплопроводность графита $\Gamma P-280$ в области критических и закритических флюенсов нейтронов в диапазоне $T_{\text{обл}} = 450 \div 800$ °C.
- 4. Под действием отжига при температуре 1200 °C в течение 2 ч. теплопроводность графита ГР-280, облучённого при $T_{\text{обл}} = 450 \div 640$ °C до флюенса нейтронов $(0,5 \div 1,5) \cdot 10^{26} \, \text{м}^{-2}$, увеличивается приблизительно в 2 раза.

Личный вклад

Автор совместно с научным руководителем выполняла постановку цели и задач, участвовала в усовершенствовании и отработке методик послереакторных исследований облучённого графита. Автор самостоятельно получила основную, определяющую часть экспериментальных результатов и выполнила анализ данных.

Апробация работы

Часть диссертационной работы выполнена при финансовой поддержке РФФИ в рамках научного проекта № 16-38-00277.

Основные результаты работы были доложены на десятой Российской конференции по реакторному материаловедению (27 ÷ 31 мая 2013 г., г. Димитровград), на седьмой Научной конференции молодых сотрудников АО «ГНЦ НИИАР» (24 ÷ 28 февраля 2014 г., г. Димитровград), на второй Всероссийской молодежной научно-технической конференции с международным участием «Инновации в материаловедении» (РАН, 01 ÷ 04 июня 2015 г., г. Москва), на XII Международном Уральском Семинаре «Радиационная физика металлов и сплавов» (с 26 февраля по 3 марта 2017 г., г. Кыштым), на Всероссийской молодежной конференции «Научные исследования и технологические разработки в обеспечение развития ядерных технологий нового поколения» (05 ÷ 07 апреля 2016 г., г. Димитровград).

Публикации

По материалам диссертации в различных изданиях опубликовано 9 печатных работ, в том числе три в издании из Перечня ВАК.

Объем и структура диссертации

Диссертация состоит из введения, четырёх глав, заключения, списка литературы. Диссертация изложена на 95 страницах, содержит 48 рисунков, 6 таблиц, список литературы из 60 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первой главе проведен анализ литературы, посвящённой влиянию нейтронного облучения на структуру и свойства реакторного графита.

Представлено описание технологии изготовления, структуры и свойств графита ГР-280, приведены характеристики и условия эксплуатации кладки реакторов РБМК, материалом которой служит графит ГР-280. Рассмотрены вопросы радиационного повреждения структуры реакторного графита и накопления в нём запасённой энергии, а также закономерности изменения теплопроводности графита под действием нейтронного облучения и последующего за ним термического отжига.

Анализ литературы показал, что теплопроводность графита Γ P-280, облучённого до флюенса нейтронов порядка 10^{26} м⁻² при температуре $450 \div 650$ °C, характерной для эксплуатации графитовой кладки реактора РБМК, изучена сравнительно слабо. Коэффициент теплопроводности графита, облучённого при таких параметрах, измеряли, в основном, при комнатной температуре, значения коэффициента теплопроводности при температуре облучения и выше были получены методом экстраполяции.

Запасённую энергию в реакторном графите интенсивно изучали в пятидесятых - семидесятых годах прошлого столетья. Подавляющая часть работ была посвящена исследованию графита, облучённого при низкой температуре до флюенса нейтронов, не превышающего $0.2\cdot10^{26}~\text{M}^{-2}$. Исследования запасённой энергии в графите, облучённом при температуре $500 \div 700~\text{C}$ до флюенса нейтронов порядка $10^{26}~\text{M}^{-2}$, не проводились.

Сделано заключение, что имеющийся в настоящее время объем экспериментальных данных по влиянию нейтронного облучения и последующего за ним термического отжига на теплопроводность графита ГР-280 и величину запасённой в нём энергии недостаточен для надёжного прогнозирования поведения кладки реакторов РБМК в условиях нормальной эксплуатации и нештатных ситуаций, сопровождающихся перегревом активной зоны. В связи с этим возникает необходимость провести исследования теплопроводности графита ГР-280,

облучённого до флюенса нейтронов порядка 10^{26} м⁻² при температуре $450 \div 650$ °C, в области высокой температуры измерения и экспериментально определить величину запасённой в нём энергии.

Во второй главе приведены характеристики исследуемых образцов, описаны методики реакторных испытаний и послереакторных материаловедческих исследований.

Образцы для реакторных испытаний представляли собой цилиндры размером $\emptyset 8 \times 30$ мм, вырезанные вдоль оси формования стандартных графитовых блоков, предназначенных для использования в реакторах РБМК.

Образцы облучали в ячейках 4-го ряда активной зоны реактора БОР-60, где плотность потока нейтронов составляет $1,5\cdot 10^{19}\,\mathrm{m}^{-2}\cdot\mathrm{c}^{-1}$ ($\mathrm{E_H}>0,18\,\mathrm{M}9\mathrm{B}$), в специально разработанных облучательных устройствах (ОУ). Было изготовлено три типа ОУ: БГ-5, БГ-6 и БГ-7, расчётные температуры облучения которых составляли соответственно 450 ± 25 , 550 ± 25 и 650 ± 25 °C. Облучение происходило поэтапно. Интервалы набранного образцами флюенса нейтронов составили $(0,5\div3,3)$ $10^{26}\,\mathrm{m}^{-2}$, $(0,5\div3,2)$ $10^{26}\,\mathrm{m}^{-2}$ и $(0,5\div2,1)\cdot 10^{26}\,\mathrm{m}^{-2}$ для ОУ БГ-5, БГ-6 и БГ-7 соответственно.

Флюенс нейтронов определяли по наведенной активности мониторов из 54 Fe и 93 Nb с погрешностью 10 %, температуру облучения образцов — по мониторам из SiC со среднеквадратическим отклонением, не превышавшим 20 °C. Средняя температура облучения составила 450, 560 и 640 °C для образцов из ОУ БГ-5, 6 и 7 соответственно.

Послереакторные материаловедческие исследования включали в себя определение запасённой энергии и коэффициента теплопроводности графита.

Коэффициент теплопроводности определяли методом лазерной вспышки с погрешностью не более 5 %, запасённую энергию – методом дифференциальной сканирующей калориметрии с погрешностью не более 3,5 %.

Для измерения коэффициента теплопроводности и запасённой энергии использовали образцы в форме дисков размером $\emptyset 8\times 5$ мм и $\emptyset 6\times 2$ мм соответственно, вырезанные механическим и электроэрозионным путем из облучённых цилиндрических образцов размером $\emptyset 8\times 30$ мм.

Все использованные методики стандартны, все исследовательские установки аттестованы.

В третьей главе представлены результаты исследований запасённой энергии в графите.

Характер выхода запасённой энергии при отжиге образцов, облучённых до флюенса нейтронов $(0.5 \div 3.2) \cdot 10^{26}$ м⁻² при температурах 450 °C и 640 °C,

продемонстрирован на рисунке 1. Образцы отжигали в динамическом режиме в интервале температуры $400 \div 1300$ °C с постоянной скоростью нагрева 20 °/мин.

Как видно из рис. 1, выделение запасённой энергии начинается уже при температуре, близкой к температуре облучения.

У образцов, облучённых при 450 °C (рис. 1 а), скорость выхода запасённой энергии (dS/dT) в диапазоне 500 ÷ 950 °C медленно увеличивается от 0 до 0,15 Дж/(Γ ·К), затем за короткий интервал температуры поднимается до максимального значения 0,40 ÷ 0,48 Дж/(Γ ·К), после чего (при температуре выше 1100 °C) быстро спадает. На начальном участке (в интервале температуры 500 ÷ 950 °C) скорость выхода запасённой энергии увеличивается с увеличением флюенса нейтронов, а при температуре 1100 °C – уменьшается.

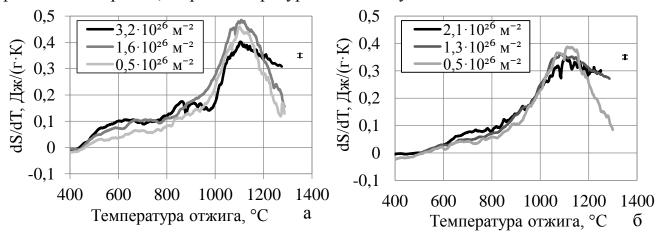


Рисунок 1 — Зависимость скорости выхода запасённой энергии от температуры отжига образцов, облучённых при $450\,^{\circ}\mathrm{C}$ (а) и $640\,^{\circ}\mathrm{C}$ (б)

Зависимости скорости выхода запасённой энергии от температуры отжига (dS/dT(T)) образцов, облучённых при 450 °C и 640°C, аналогичны (рис. 1 а и 1 б), однако абсолютное значение скорости выхода запасённой энергии у образцов, облучённых при 640 °C, во всем интервале температуры отжига приблизительно на 20 % ниже, чем у образцов, облучённых при 450 °C.

Следует отметить, что даже на участке медленного увеличения скорости выхода запасённой энергии (500 \div 950 °C), зависимость dS/dT(T) имеет немонотонный характер — график dS/dT(T) представляет собой череду пиков, а в интервале резкого увеличения скорости выхода запасённой энергии (950 °C \div 1100 °C) на кривой зависимости dS/dT(T) просматриваются, как правило, характерные ступени.

Выделение энергии при нагреве образцов выше температуры облучения, как известно, является следствием термического отжига радиационных дефектов – дефекты аннигилируют, исчезают на границах зёрен, образуют скопления и т.д.,

при этом доля свободной энергии, приходящаяся на один атом кристаллической решётки, уменьшается, а избыточная энергия выделяется в виде тепла [6, 7].

Исследуемый графит облучён до высокого флюенса нейтронов, поэтому можно предположить, что в его кристаллической решётке содержится серия радиационных дефектов, различающихся размером и конфигурацией. Учитывая, каждый тип дефектов отжигается на строго определенной стадии, характеризующейся энергией своей И температурой активации, наблюдаемые на экспериментальных кривых dS/dT(T), демонстрируют, по всей видимости, стадии отжига, связанные с преобразованием разных радиационных дефектов.

Снижение скорости выхода запасённой энергии с увеличением температуры облучения является, по всей видимости, следствием термического отжига радиационных дефектов в процессе облучения. Различное влияние флюенса нейтронов на величину dS/dT в разных интервалах температуры отжига можно объяснить противодействием при облучении двух процессов: накопления радиационных дефектов и их радиационного отжига.

Общая запасённая энергия. Общую запасённую энергию (S), выделившуюся в результате отжига графита в диапазоне от температуры облучения до 1300 °C, определяли путем численного интегрирования dS/dT(T), приведенных на рис. 1, в интервале температуры $400 \div 1300$ °C. Значения S представлены на рис. 2, откуда видно, что с увеличением флюенса нейтронов общая запасённая энергия у образцов, облучённых при температуре 450 °C, сначала возрастает и достигает значения приблизительно 200 Дж/г, а начиная с $1,6\cdot10^{26}$ м⁻² уже существенно не меняется.

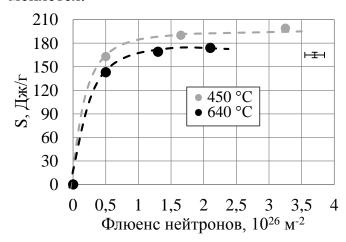


Рисунок 2 — Зависимость общей запасённой энергии, выделившейся при отжиге облучённых образов в интервале температуры 400 ÷ 1300 °C, от флюенса нейтронов

образцов, облучённых при температуре 640 °C, величина Sблизка к насыщению при флюенсе нейтронов ~ $(0.7 \div 1.0) \cdot 10^{26} \,\mathrm{m}^{-2}$, вместе с тем предельная величина общей запасённой энергии на 20 ÷ 25 Дж/г общей ниже запасённой энергии образцов, облучённых при температуре 450 °C до же флюенсов нейтронов.

Стадия стабилизации на зависимости общей запасённой энергии от флюенса нейтронов объясняется, как правило, увеличением числа стоков, а

снижение величины S при увеличении температуры облучения — термическим отжигом дефектов в процессе облучения.

Выделение запасённой энергии $180 \div 200$ Дж/г при отжиге графита в диапазоне температуры $400 \div 1300$ °C приводит к его дополнительному разогреву приблизительно на 100 °C.

<u>Кинетика отжига радиационных дефектов.</u> Зависимость dS/dT(T) позволяет установить число и последовательность элементарных стадий отжига радиационных дефектов и определить значения параметров их кинетических уравнений. Методика кинетического анализа кривых dS/dT(T), полученных при постоянной скорости нагрева образцов, подробно описана в работах [8, 9].

На рисунке 3 приведены зависимости dS/dT(T), полученные при отжиге двух образцов, облучённых при температуре 450 °C до флюенса нейтронов $3,2\cdot10^{26}\,\mathrm{m}^{-2}$, с разными скоростями нагрева 20 °C/мин и 40 °C/мин.

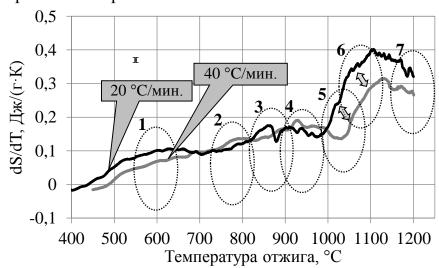


Рисунок 3 – Зависимость скорости выхода запасённой энергии от температуры отжига при скорости нагрева образца 20 °С/мин. и 40 °С/мин.

На кривых можно выделить 7 элементарных стадий.

Зависимость скорости выхода запасённой энергии от температуры отжига на каждой стадии можно описать уравнением [8]:

$$\frac{dS(E,T)}{dT} = -\frac{v}{a}S(E,T)\exp(-\frac{E}{kT}), \qquad (1)$$

где dS(E,T)/dT — скорость выхода запасённой энергии, Дж/(г·К); E — энергия активации дефектов, эВ; v — частота процесса отжига, 1/c; k — постоянная Больцмана, эВ/К; T — температура отжига, K; a — скорость нагрева, K/c; S(E,T) — запасённая энергия, Дж/г.

Решением уравнения (1) является функция:

$$S(E,T) = S(E,0) \exp\left[\frac{-vE}{ak}H\left(\frac{kT}{E}\right)\right], \ H(x) = \int_{0}^{x} exp(-\frac{1}{y})dy. \tag{2}$$

График функции S(E,T) имеет колоколообразный вид. Из равенства нулю в точке максимума ($T=T_m$) производной S(E,T) можно записать, считая, что энергия активации имеет нормальное распределение с математическим ожиданием E_0 и среднеквадратическим отклонением ε , следующее:

$$ln(\frac{a}{T_m}) = ln\frac{vk}{E_0} - \frac{E_0}{kT_m}.$$
 (3)

Последнее уравнение позволяет определить кинетические параметры v и E_0 :

$$v = \frac{E_0}{k} \exp(B), E_0 = -Ak, \tag{4}$$

где A и B — это коэффициенты уравнения (3) в координатах $(\frac{1}{T_m}, \ln(\frac{a}{T_m^2}))$.

Графики уравнения (3) и рассчитанные по ним кинетические параметры ν и E_0 для каждой из 7 стадий отжига образца, облучённого при температуре 450 °C до флюенса нейтронов $3.2 \cdot 10^{26}$ м⁻², представлены на рисунке 4 и в таблице 1.

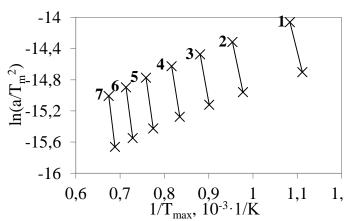


Рисунок 4 — Связь между скоростью нагрева и температурой, соответствующей максимуму скорости выхода запасённой энергии

Таблица 1 – Кинетические параметры процессов отжига

№ пика	T _m , °C	Е ₀ , эВ	е, эВ	v, сек. ⁻¹
1	630	1,95	1,8 10-1	8,2 108
2	750	2,33	4,7 10-2	2,7 10 ⁹
3	840	2,70	1,0 10 ⁻³	1,6 10 ¹⁰
4	920	3,03	6,3 10 ⁻³	4,9 10 ¹⁰
5	1020	3,44	6,9 10-2	2,3 10 ¹¹
6	1100	3,72	1,0 10-1	3,6 10 ¹¹
7	1180	4,03	8,1 10 ⁻²	7,5 10 ¹¹

На рисунке 5 приведена расчётная кривая dS/dT(T), представляющая собой суперпозицию dS/dT(T) 7 элементарных стадий, а также экспериментальные значения dS/dT. Видно, что расчётные значения dS/dT хорошо согласуются с экспериментальными.

Согласно литературным данным [4, 6] в графите при температуре облучения $400 \div 500$ °C междоузельные атомы из-за их низкой энергии активации уже в процессе облучения образуют крупные кластеры, перерождающиеся затем в дополнительные атомные плоскости. Вакансии, напротив, приобретают подвижность только в районе температуры $500 \div 600$ °C. Следовательно, можно предположить, что первый пик, наблюдаемый на dS/dT(T) при температуре 630 °C,

обусловлен миграцией моновакансий. Значения энергии активации моновакансий, полученные различными авторами экспериментальным путем, значительно отличаются и лежат в интервале от 1,8 до 3,6 эВ, а значения, полученные на основе квантово-механических расчетов, группируются вокруг величины 1,7 эВ [10]. В работе [11] экспериментально установлено, что энергия миграции вакансий в сильно облученном графите является переменой величиной $\sim 1,8 \pm 0,3$ эВ. Таким образом, полученные нами экспериментальные данные подтверждают выводы авторов работ [4, 6, 10, 11], что процесс отжига моновакансий имеет место в интервале температуры 500 \div 600 °C с переменной энергией активации 1,95 \pm 0,18 эВ.

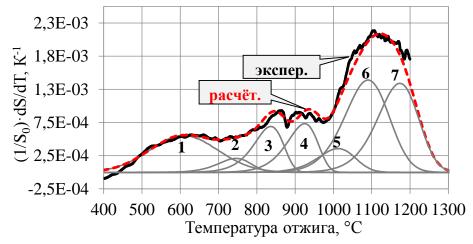


Рисунок 5 — Сравнение экспериментальной и расчётной кривой зависимости скорости выхода запасённой энергии от температуры отжига. Скорость выхода запасённой энергии нормирована

Мигрирующие вакансии, взаимодействуя друг с другом, образуют дивакансии и, с меньшей вероятностью, более крупные вакансионные кластеры, при этом свободная энергия, приходящаяся на одну вакансию, уменьшается.

Процессы отжига облученного графита при температуре выше 600 °С изучены очень слабо ввиду большого количества возможных конфигураций радиационных дефектов. Процессы отжига, которые соответствуют стадиям 2 ÷ 4 и имеют энергию активации 2,33 ÷ 3,03 эВ, можно отнести, по всей видимости, к миграции дивакансий. В работе [10] приведены различные конфигурации дивакансий и показано, что одна из них, дивакансия третьего порядка, может перемещаться посредством двойной трансформации в решетке графита с энергией активации 2,8 эВ, что близко к энергии активации стадий 2 ÷ 4. При движении дивакансии взаимодействуют друг с другом, образуя квадровакансии, и с кластерами вакансионного и внедренного типов, изменяя их размер. Энергии активации этих процессов зависят так же от высоты энергетического барьера, который

преодолевают подвижные дивакансии при слиянии с другим дефектом, что может приводить к появлению дополнительных пиков на кривой dS/dT(T), как это наблюдается в нашем случае.

В интервале температуры $900 \div 1300$ °C были выделены три пика с энергиями активации процесса отжига 3,44 эВ, 3,72 эВ и 4,03 эВ. Эти значения сравнимы с расчетными значениями энергии «испарения» моновакансии из $4 \div 6$ вакансионного кластера или дислокационной петли $(3,2 \div 3,6$ эВ), приведёнными в работе [10]. Испарившиеся моновакансии обладают высокой подвижностью (энергия миграции составляет 1,7 эВ) и сливаются с неподвижными вакансионными или междоузельными кластерами с выделением значительного количества запасённой энергии.

В четвёртой главе приведены результаты исследований теплопроводности облучённого графита.

Теплопроводность графита измеряли в диапазоне температуры $25 \div 1200$ °C. Особое внимание в работе уделено коэффициенту теплопроводности (λ) при температуре измерения, равной температуре облучения ($T_{u_{3M}} = T_{oбn}$).

Теплопроводность графита при $T_{uзм} = T_{oбл}$. На рисунке 6 приведены зависимости относительного изменения коэффициента теплопроводности $\Delta \lambda/\lambda_{ucx} = (\lambda_{ucx} - \lambda_{oбл})/\lambda_{ucx}$ при $T_{uзм} = T_{oбл}$ от флюенса нейтронов для температуры облучения 450 °C, 560 °C и 640 °C.

Под действием облучения, как видно из рис. 6, теплопроводность графита уменьшается, причём величина относительного изменения коэффициента теплопроводности для всех температур облучения спадает немонотонно с увеличением флюенса нейтронов.

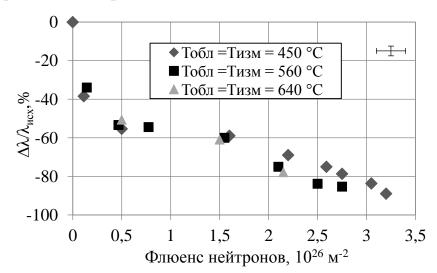


Рисунок 6 — Зависимость от флюенса нейтронов относительного изменения коэффициента теплопроводности графита, облучённого при температурах: $450 \, ^{\circ}\mathrm{C}$, $560 \, ^{\circ}\mathrm{C}$ и $640 \, ^{\circ}\mathrm{C}$

Для каждой температуры облучения можно выделить три интервала флюенса нейтронов (F): 1-ый интервал — малые F (до $0.5\cdot10^{26}$ м⁻²), где наблюдается резкое падение величины $\Delta\lambda/\lambda_{ucx}$; 2-ой интервал — промежуточные F ($0.5\cdot10^{26}$ м⁻² ÷ $1.5\cdot10^{26}$ м⁻²), где изменение $\Delta\lambda/\lambda_{ucx}$ незначительно; и 3-ий интервал — F выше $1.5\cdot10^{26}$ м⁻², где вновь начинается ускорение темпов падения λ .

Резкое падение λ на начальном этапе облучения является следствием интенсивного накопления точечных радиационных дефектов и их мелких скоплений. Вторая стадия (стадия стабилизации теплопроводности) наступает в результате возрастающего числа стоков, когда количество вновь образованных дефектов компенсируется количеством дефектов, исчезнувших на стоках [12, 13]. Ускорение темпов падения λ на третьей стадии происходит из-за активного зарождения и роста микротрещин [13].

На рисунке 7 представлена зависимость коэффициента теплопроводности образцов, облучённых до флюенса нейтронов выше $0.5 \cdot 10^{26}$ м⁻², при $T_{uзм} = T_{oбn}$ от температуры облучения ($\lambda_{oбn}(T_{oбn})$). Коэффициент теплопроводности с увеличением температуры облучения уменьшается, что связано, по всей видимости, с ускорением процесса образования микротрещин.

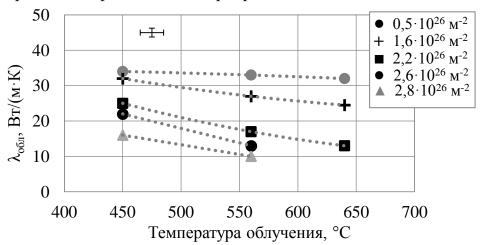


Рисунок 7 — Зависимость коэффициента теплопроводности облучённого графита от температуры облучения

В работе была получена аналитическая зависимость коэффициента теплопроводности при $T_{u_{3M}}=T_{oбn}$ от параметров облучения в области высоких флюенсов нейтронов ($\lambda_{oбn}(T,F)$).

Поскольку в результате образования микротрещин под действием облучения наряду со снижением теплопроводности при некотором значении флюенса нейтронов (так называемом критическом флюенсе) происходит распухание образца [13], для формирования зависимости $\lambda_{oбn}(T,F)$ в области высоких флюенсов нейтронов было применено эмпирическое уравнение, связывающее изменение коэффициента теплопроводности с изменениями размеров под облучением [14]:

$$\lambda_{oon} = \frac{\lambda_{ucx}(T)}{S(T) + V_R(F, T) \cdot (F - F_{\kappa p}(T)) + I},$$
(5)

$$V_{R}(F,T) = \left(\frac{\Delta V}{V_{ucx}}(F) \middle/ \left(\frac{\Delta V}{V_{ucx}}\right)_{min}\right)_{T} - 1, \tag{6}$$

где $\lambda_{ucx}(T)$, $\lambda_{oбn}(T)$ — коэффициент теплопроводности исходного и облучённого графита, $Bt/(M\cdot K)$; V_{ucx} — исходный объём образца, M^3 ; S(T) — относительное изменение термосопротивления $(I/\lambda_{oбn})$ в интервале флюенсов нейтронов, где зависимость коэффициента теплопроводности от флюенса нейтронов выходит на плато (2 стадия); F — флюенс быстрых нейтронов, 10^{26} M^{-2} ; $F_{\kappa p}(T)$ — критический флюенс нейтронов (флюенс нейтронов, при котором объем образца после стадии усадки возвращается к своему исходному значению), 10^{26} M^{-2} ; $\Delta V/V_{ucx}$ — относительное изменение объема образца при $T_{oбn}$; $(\Delta V/V_{ucx})_{min}$ — минимальное относительное изменение объема образца при $T_{oбn}$.

Для практического использования этой формулы необходимо было определить зависимости от параметров облучения отдельных её членов — $\lambda_{ucx}(T)$, S(T), $V_R(F,T)$ и $F_{\kappa p}(T)$. Значения $\lambda_{ucx}(T)$, S(T), $V_R(F,T)$ и $F_{\kappa p}(T)$ представлены на рисунках $8 \div 11$, часть из них были получены в рамках этой работы, остальные — взяты из работ [13, 14, 15, 16].

Приведённые на рисунке 10 значения S из работы [14] — это относительные изменения термосопротивления на стадии насыщения функции $\lambda(F)$, усреднённые по нескольким маркам зарубежного реакторного графита, технология изготовления и свойства которых близки к графиту Γ P-280. Все значения $V_R(F,T)$ и $F_{\kappa p}(T)$ приведены к условиям облучения в реакторе БОР-60.

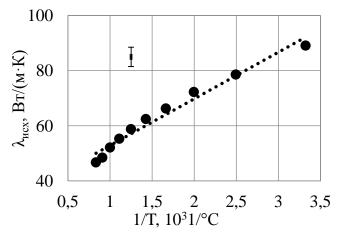


Рисунок 8 – Зависимость коэффициента теплопроводности необлучённого графита ГР-280 от температуры измерения

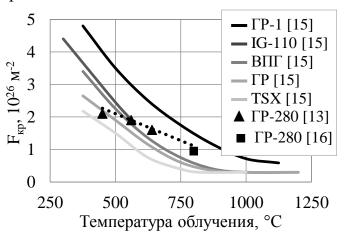
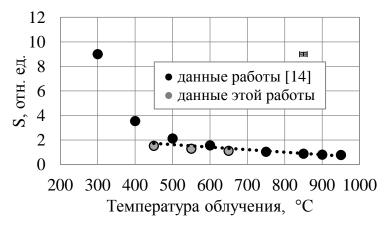



Рисунок 9 — Зависимость критического флюенса нейтронов реакторного графита от температуры облучения

Pисунок 10 — Зависимость величины S реакторного графита от температуры облучения

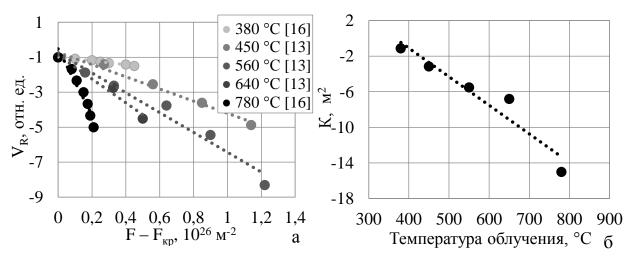


Рисунок 11 — Экспериментальные данные и график функции $V_R(F,T)$: a — общий вид, δ — зависимость углового коэффициента функции $V_R(F,T)$ от температуры облучения

Коэффициент теплопроводности исходного графита, относительное изменение термосопротивления на стадии насыщения функции $\lambda(F)$ и критический флюенс нейтронов зависят только от температуры и в диапазоне $450 \div 800$ °C могут быть аппроксимированы линейными функциями:

$$\lambda_{ucx} = (16, 9/T) \cdot 10^3 + 35, 9, \tag{7}$$

$$F_{\kappa p} = -3.31 \cdot T \cdot 10^{-3} + 3.75, \tag{8}$$

$$S = -2.11 \cdot T \cdot 10^{-3} + 2.67 \tag{9}$$

 $V_R(F,T)$ в координатах $(F-F_{\kappa p},V_R)$ также может быть задана линейной функцией следующего вида:

$$V_R(F,T) = K \cdot (F - F_{\kappa p}) - 1. \tag{10}$$

Угловой коэффициент K в уравнении (10) зависит от температуры следующим образом:

$$K = -3.21 \cdot T \cdot 10^{-2} + 11.7. \tag{11}$$

Выражения (5 ÷ 11) представляют собой аналитическую зависимость коэффициента теплопроводности графита ГР-280 от температуры облучения и флюенса нейтронов в области флюенса нейтронов выше критического и в диапазоне температуры 450 ÷ 800 °C. При температуре выше 800 °C зависимость $F_{\kappa p}(T)$ у реакторного графита (см. рис. 9) резко меняет свой характер, переходя от стадии быстрого снижения $F_{\kappa p}$ с увеличением температуры к практически постоянному значению $F_{\kappa p}$, и выражение (8) становится некорректным.

На рисунке 12 приведён график зависимости $\lambda_{oбn}(T,F)$ вместе с имеющимися экспериментальными точками $\lambda_{oбn}$. Следует отметить согласованность экспериментальных и расчётных данных.

Согласно уравнениям (5 ÷ 11), с увеличением $T_{oбn}$ в интервале 450 ÷ 700 °C, типичном для эксплуатации в реакторах РБМК, величина $\lambda_{oбn}$ спадает в разы и при флюенсе нейтронов выше 2,5·10²⁶ м⁻² достигает значений менее 5 Вт/(м·К) (см. рис. 12).

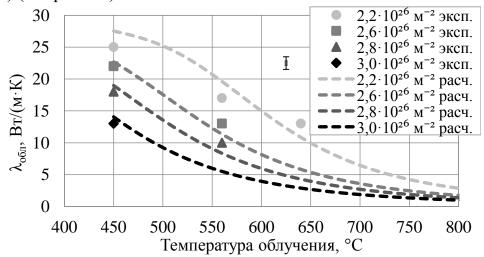


Рисунок 12 — Экспериментальные и рассчитанные по формуле (5) значения коэффициента теплопроводности облучённого графита ГР-280.

Температура измерения равна температуре облучения

Влияние послереакторного термического отжига на теплопроводность графита

Отжиг облучённых образцов выполняли при температурах 600 °C, 800 °C, 1000 °C и 1200 °C в течении 2 часов.

Как показали результаты измерения, отжиг при температуре до 800 °C не оказывает значительного влияния на теплопроводность образца: до отжига величина относительного изменения коэффициента теплопроводности ($\Delta \lambda/\lambda = (\lambda_{oбn} - \lambda_{ucx})/\lambda_{ucx}$), измеренного при температуре, равной температуре облучения, составляет -64 %, а после отжига при 600 °C и 800 °C соответственно -63 и

-61 % (рис. 13). При температуре отжига выше 800 °C происходит резкое уменьшение относительного изменения коэффициента теплопроводности: после отжига при 1000 °C $\Delta\lambda/\lambda$ достигает -54 %, а после отжига при 1200 °C – -34 %.

На рисунке 14 приведена зависимость коэффициента теплопроводности образцов, облучённых до флюенса нейтронов $0.5\cdot10^{26}\,\mathrm{m}^{-2}$ и $1.5\cdot10^{26}\,\mathrm{m}^{-2}$, до и после отжига при 1200 °C от температуры облучения. Измерения выполнены при комнатной температуре.

Из рисунка видно, в результате термического отжига коэффициент теплопроводности увеличивается на $19 \div 39 \, \mathrm{BT/(m \cdot K)}$, причём разность между теплопроводностью образца до и после отжига ($\lambda_{\mathrm{обл+отж}}$ - $\lambda_{\mathrm{обл}}$) с увеличением температуры облучения и флюенса нейтронов уменьшается: с повышением флюенса нейтронов от $0.5 \cdot 10^{26} \, \mathrm{m}^{-2}$ до $1.5 \cdot 10^{26} \, \mathrm{m}^{-2}$ ($\lambda_{\mathrm{обл+отж}}$ - $\lambda_{\mathrm{обл}}$) снижается на $11 \, \mathrm{BT/(m \cdot K)}$ (при температуре облучения $450 \, ^{\circ}\mathrm{C}$), а с возрастанием температуры облучения с $450 \, ^{\circ}\mathrm{C}$ до $640 \, ^{\circ}\mathrm{C}$ — на $9 \, \mathrm{BT/(m \cdot K)}$ (при флюенсе нейтронов $1.5 \cdot 10^{26} \, \mathrm{m}^{-2}$). При этом независимо от параметров облучения коэффициент теплопроводности образцов увеличивается под действием отжига в среднем в $2.3 \, \mathrm{pasa}$.

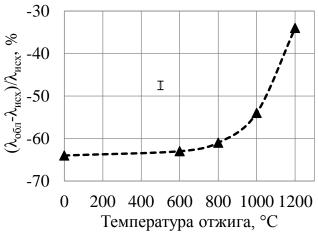


Рисунок 13 — Зависимость от температуры отжига относительного изменения коэффициента теплопроводности образца, облучённого при 450 °C до флюенса нейтронов 1,5·10²⁶ м⁻²

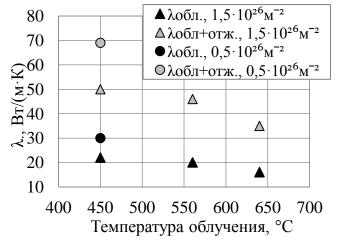


Рисунок 14 — Зависимость коэффициента теплопроводности образцов, облучённых до флюенса нейтронов 0,5·10²⁶ м⁻² и 1,5·10²⁶ м⁻², от температуры облучения до и после отжига при 1200 °C

Снижение ($\lambda_{\text{обл+отж}}$ - $\lambda_{\text{обл}}$) при увеличении флюенса нейтронов и температуры облучения связано, по всей видимости, с отжигом радиационных дефектов в процессе облучения, в результате которого происходит их укрупнение или исчезновение на стоках и соответственно ускорение процесса межкристаллитного растрескивания [13].

Выводы

- 1. Прирост выхода запасённой энергии в зависимости от флюенса нейтронов вплоть до $F = 3,2\cdot 10^{26}$ м⁻² при послерадиационном отжиге в диапазоне от $450 \div 640$ °C до 1300 °C графита ГР-280 прекращается при флюенсе нейтронов около $(0,7 \div 1,5)\cdot 10^{26}$ м⁻². Предельная величина общей запасённой энергии при $T_{\rm обл} = 450$ °C составляет около 200 Дж/г, а при $T_{\rm обл} = 640$ °C около 180 Дж/г. При температуре послерадиационного отжига 1100°C скорость выхода запасённой энергии максимальна.
- 2. Спектр скорости выхода запасённой энергии графита ГР-280, облучённого при $T_{\text{обл}} = 450$ °C до $F = 3,2 \cdot 10^{26}$ м⁻², в интервале от $T_{\text{обл}}$ до 1300 °C включает в себя 7 стадий с энергиями активации дефектов от 1,95 до 4,03 эВ. Согласно современным теоретическим моделям, такому диапазону энергии активации соответствуют энергии миграции моно- и дивакансий, а также энергия «испарения» моновакансии из $(4 \div 6)$ вакансионного кластера или дислокационной петли.
- 3. Установлено, что при температуре нормальной эксплуатации графитовой кладки в реакторе РБМК-1000 (450 ÷ 640 °C) в области флюенса нейтронов выше критического происходит резкое снижение коэффициента теплопроводности графита марки ГР-280 с увеличением F и Тоби, вероятно, из-за значительного накопления микротрещин в графите под облучением. Предложена аналитическая зависимость коэффициента теплопроводности графита ГР-280 при этих температурах от параметров облучения, которая учитывает образование микротрещин в графите при облучении в области высоких флюенсов нейтронов. С зависимости проведена экстраполяция использованием этой полученных экспериментальных результатов до $T_{\text{обл}} = 800$ °C, и показано, что коэффициент теплопроводности при увеличении Тобл с 450 °C до 800 °C уменьшается почти на порядок.
- 4. Установлено, что коэффициент теплопроводности графита ГР-280, облучённого при $450 \div 640$ °C до флюенса нейтронов $(0,5 \div 1,5)\cdot 10^{26}$ м⁻², в результате термического отжига при 1200 °C в течении 2 ч увеличивается на $19 \div 39$ Вт/(м·К) (при комнатной температуре измерения). Эффект отжига в абсолютных величинах в указанном выше диапазоне параметров облучения снижается с увеличением флюенса нейронов и температуры облучения, однако отношение коэффициента теплопроводности до и после отжига является постоянной величиной, равной 2,3.

Публикации по теме диссертации

Основные результаты диссертации опубликованы в следующих работах:

1. Покровский, А.С., Белан, Е.П., Харьков, Д.В. Запасённая энергия в графите, облучённом до высоких флюенсов нейтронов // Фундаментальные исследования. – 2015. – № 5-1. – С. 130-136.

- 2. Покровский, А.С., Белан, Е.П., Харьков, Д.В. Теплопроводность графита ГР-280, облучённого до высокого флюенса нейтронов // Фундаментальные исследования. 2015. № 12-6. С. 1126-1133.
- 3. Белан, Е.П., Покровский, А.С., Харьков, Д.В. Влияние термического отжига на теплопроводность графита марки ГР-280, облучённого до высокого флюенса нейтронов // Известия высших учебных заведений. Поволжский регион. Физико-математические науки. 2017 № 1 (41). С. 82–91.
- 4. Исследование радиационной стойкости графита ГР-280 с учетом влияния гамма-излучения: отчёт о НИР / А.С. Покровский, В.С. Сандаков и др. Димитровград: НИИАР, 2009. 77 с.
- 5. Покровский, А.С., Харьков, Д.В., Бутылин, А.С., Белан, Е.П. Методическое обеспечение исследований теплофизических свойств и открытой пористости облученного графита // X Российская конференция по реакторному материаловедению, Димитровград, 27 31 мая 2013 г.: Тез. докл. Димитровград: НИИАР. 2013.
- 6. Покровский, А.С., Белан, Е.П., Авдонин, А.В. Изменение теплофизических свойств облучённого реакторного графита при высокотемпературном отжиге // Сборник трудов АО «ГНЦ НИИАР». 2015. Вып.1. С. 3-10.
- 7. Покровский, А.С., Белан, Е.П., Харьков, Д.В. Запасённая энергия в графите, облучённом до высоких флюенсов нейтронов // Всероссийской молодежной научно-технической конференции с международным участием «Инновации в материаловедении», Москва, 01 04 июня 2015 г.: Тез. докл. 2015.
- 8. Белан, Е.П., Харьков, Д.В. Влияние термического отжига на теплопроводность графита марки ГР-280, облучённого до высокого флюенса нейтронов// Сборник трудов АО «ГНЦ НИИАР». 2016. Вып. 1. C. 26—31.
- 9. Покровский, А.С., Белан, Е.П., Харьков, Д.В. Теплопроводность графита ГР-280, облучённого до высокого флюенса нейтронов // Всероссийская молодежная конференция «Научные исследования и технологические разработки в обеспечение развития ядерных технологий нового поколения», Димитровград, 05-07 апреля 2016 г.: Тез. докл. Димитровград: НИИАР. 2016.

Список литературы

- 1. Обоснование предельно достижимого срока эксплуатации графитовых кладок РБМК-1000: целевая программа 4.85 П. Москва, НИКИЭТ. 1997.
- 2. Платонов, П.А. Расчетно-экспериментальные исследования энергии Вигнера и физических свойств графита вытеснителей СУЗ РБМК / П.А. Платонов [и др.]// Атомная энергия. -2003. № 94 (4). С 270.
- 3. Цыганов, А.А. Запасенная энергия в графите кладок остановленных промышленных уран-графитовых реакторов / А.А. Цыганов [и др.] // Известия Томского политехнического университета. 2008. № 312(2). С 32-38.

- 4. Burchell, T. Irradiation Damage in Graphite from the Nano- to the Mille-Metric Scale / T. Burchell // Technical Meeting on High-Temperature Qualification of High Temperature Gas Cooled Materials (Vienna, 10-13 Jun 2014). Vienna, 2014. P. 11.
- 5. Gallego, N. C. A Review of Stored Energy Release of Irradiated Graphite / N. C. Gallego, T. D. Burchell // Milestone Report on the Workshop on HTGR Graphite Stored Energy Release, ORNL/TM-2011/378 (Oak Ridge, September 2011). Oak Ridge, 2011. P. 55.
- 6. Telling, R. H. Radiation defects in graphite / R. H. Telling, M. I. Heggie // Phil Mag. 2007. № 87. P. 797-846.
- 7. Simmons, J.H. Radiation damage in graphite / J.H. Simmons. Oxford: Pergamon Press, 1965. 242 p.
- 8. Iwata, T. Fine structure of Wigner energy release spectrum in neutron irradiated graphite / T. Iwata // J. Nucl. Mater. 1985. № 133&134. P. 361-364.
- 9. Lasithiotakis, M. Application of an independent parallel reactions model on the annealing kinetics of BEPO irradiated graphite / Michael Lasithiotakis, Barry J. Marsden, T. James Marrow // J. Nucl. Mater. 2012. № 427. P. 95-109.
- 10. El-Barbary, A. A. First principles characterization of defects in irradiated graphitic materials: A thesis submitted towards fulfilment of the requirement for the degree of Doctor of Philosophy. Sussex, 2005. 171 p.
- 11. Asari, E. Thermal relaxation of ion-irradiation damage in graphite / E. Asari, M. Kitajima, K. G.Nakamura & T. Kawabe // Phys. Rev. 1993. № 47. P. 11143-11148.
- 12. Гончаров, В. В. Действие облучения на графит ядерных реакторов / В. В. Гончаров [и др.]. М.: Атомиздат, 1978. 272 с.
- 13. Харьков, Д. В. Влияние высокодозного нейтронного облучения на изменение физических свойств реакторного графита: диссертация на соискание ученой степени кандидата технических наук. Димитровград. 2011. 126 с.
- 14. Haag, G. Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation / G. Haag // Report No. Jul-4183 (Jülich, Germany, 2005). Jülich, Germany, 2005. P. 148.
- 15. Виргильев, Ю. С. Реакторный графит: разработка, производство и свойства / Ю. С. Виргильев [и др.] // Российский химический журнал (ЖРХО им. Д.И. Менделеева). 2006. № 50 (1). С. 4-12.
- 16. Лебедев, И.Г. Радиационная стойкость графита ядерных реакторов / И.Г. Лебедев. Димитровград: ФГУП "ГНЦ РФ НИИАР", 2005. 249 с.

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ

РБМК - реактор большой мощности, канальный;

ОУ - облучательное устройство.