АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ Вычислительная математика

по направлению/направленности: 11.03.02 Инфокоммуникационные технологии и системы связи

1. Цели и задачи освоения дисциплины

Цели дисциплины:

Дисциплина «Вычислительная математика» знакомит студентов с основополагающими положениями теории и практическими вопросами компьютерной реализации вычислительных методов с акцентом на учёт погрешностей.

Предметом изучения являются основные вычислительные методы решения задач линейной алгебры и математического анализа без попытки охватить всё многообразие методов.

Цели дисциплины «Вычислительная математика»» –

- заложить базовые знания и умения в области построения и особенностей компьютерной реализации численных методов для систем обработки информации и управления;
- обеспечить понимание фундаментальных концепций в проблемах анализа погрешностей численных методов;
- привить навыки алгоритмического мышления и способность разбираться в приложениях теории численных методов.

Названная дисциплина будет использована при изучении отдельных дисциплин профессионального цикла, а также к применению этих знаний и умений в дальнейшей учебе и практической деятельности и при выполнении курсовых и дипломных работ.

Задачи дисциплины – охватить изучением пять базовых разделов, а именно:

- (1) методы Гаусса и Гаусса-Жордана исключения неизвестных в задачах решения систем линейных алгебраических уравнений, отыскания обратной матрицы и вычисления определителя, посредством стандартных и современных векторноориентированных алгоритмов LU-разложения,
- (2) методы разложения Холесского положительно определённых матриц, имеющие практическое значение в численных методах оптимизации,
- (3) методы Хаусхолдера, Гивенса и Грама-Шмидта ортогональных преобразований в задачах решения систем линейных алгебраических уравнений, отыскания обратной матрицы, а также при решении переопределённых систем уравнений,
- (4) метод наименьших квадратов в задаче решения произвольных систем уравнений, включая две интерпретации задачи: детерминистскую и статистическую
- (5) итерационные методы численного отыскания корней линейных и нелинейных уравнений (базовые методы Якоби, Зейделя, Ричардсона, Юнга и Ньютона).

2. Место дисциплины в структуре ОПОП (уровень подготовки кадров высшей квалификации)

Дисциплина « Методы вычислений» относится к числу дисциплин блока Б.1(ВОД7) по направлению подготовки : 11.03.02 Инфокоммуникационные технологии и системы связи

•

Для успешного изучения дисциплины необходимы знания и умения, приобретенные в результате освоения курсов «Алгебра и теория чисел»; «Информатика и программирование»; «Математический анализ».

Основные положения дисциплины используются в дальнейшем при изучении таких дисциплин как «Методы программирования современных информационных систем» и подкрепляют изучение параллельных дисциплин: «Структуры и алгоритмы компьютерной обработки данных»; «Теория вычислительных процессов и структур».

3.Перечень планируемых результатов обучения по дисциплине

Процесс изучения дисциплины, в соответствии с целями основной образовательной программы и задачами профессиональной деятельности, направлен на формирование следующих компетенций:

общекультурные компетенции (ОПК):

- способность к самоорганизации и самообразованию (OK-7); общепрофессиональные компетенции (ОПК):
- способность применять в профессиональной деятельности знания математических основ информатики (ОПК-2);

профессиональные компетенции (ПК):

готовность к разработке моделирующих алгоритмов и реализации их на базе языков и пакетов прикладных программ моделирования (ПК-3).

В результате изучения дисциплины студент должен:

• иметь представление:

о том, как методы вычислений и компьютеры применяются к проблемам реального мира и как с их помощью решаются основные задачи вычислительной математики;

• знать:

структуру погрешностей решения вычислительных задач, свойства корректности и обусловленности задач и методов, сравнительные характеристики прямых и итерационных методов решения линейных систем уравнений, классические методы решения нелинейных уравнений, а также задачи и алгоритмы метода наименьших квадратов и постановку проблемы собственных значений и вводные сведения об основах ее решения;

• уметь:

выводить и доказывать положения математической теории методов вычислений, изучать предмет самостоятельно; использовать литературные источники; использовать персональный компьютер для программирования; эффективно конспектировать материал и распоряжаться рабочим временем;

• приобрести навыки:

аналитического мышления, позволяющие понимать реализацию и поведение методов вычислений и решений на практике и логически формулировать методы вычислений в виде алгоритмов решения задач на компьютере с применением языков программирования высокого уровня;

• владеть, иметь опыт:

методикой разработки компьютерных программ, реализующих основные алгоритмы численных методов, понимать особенности компьютерной реализации этих методов.

3. Общая трудоемкость дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц (180 часов)

4. Образовательные технологии

Для курса «Методы вычислений» специальное оборудование не требуется. Предполагается, что каждый студент имеет домашний компьютер, на котором он может выполнять домашние задания на самостоятельную работу.

Программное обеспечение для приёма самостоятельных работ в дисплейном классе:

Операционная система WindowsXP или выше.

Браузер IE v.8 (или любой доступный).

Пакет офисных прикладных программ (MS Office 2007/2010 или OpenOffice 3.0 или более поздней версии).

Пакет прикладных программ FreePascal 2.2.2.

Программные средства антивирусной защиты – антивирус Касперского, пакет PCSec.

Программные средства для работы с архивами документов – 7-zip 9.04 beta.

Программа для просмотра документов в формате PDF - Adobe Reader 9.2 или выше.

5. Контроль успеваемости

Программой дисциплины предусмотрены следующие виды текущего контроля <u>Экзамен в 4 семестре</u>